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1. Introduction

The aim of the paper is to study the relations between classes of functions defined
by rates of best approximation with respect to hyperbolic crosses and smoothness
spaces either defined by Fourier analytical tools or defined by differences with a
dominating mixed term. In a sense this article is a continuation of the paper by
Lizorkin and Nikol’skij [17] taking into account new developments such as the
interpolation characterization (of the approximation classes) and more refined
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spaces such as the two scales of spaces S;‘qB(Rz) and S F (R?) of Besov-Lizorkin—
Triebel type with dominating mixed smoothness. On the other hand, it serves as an
orientation towards approximation by sampling from sparse grids which will be the
subject of a forthcoming paper by the second named author.

Here we call the set

Hm = {(51,52) : 3}’6{0, ,Wl} S.t. |f]|<2rﬂ? and |52|<2n17r7'[} (l)

the hyperbolic cross of order m, meNj. According to these sets we define the
hyperbolic best approximation of order m in L,(R*) as

En(f,Lp) = inf || f — g|L,(R*)]], (2)

where the infimum is taken with respect to all functions ge L,(R?) such that the
support of its Fourier transform % ¢ is contained in H,,. This notion imitates those
known from hyperbolic cross approximation of periodic functions or those from
hyperbolic wavelet approximation, cf. [2,3,9,15,17,18,25,26]. For r>0 and
1<p, g< oo the approximation space A;ﬁq([l%z) is defined as the collection of all

feL,(R?) such that

o 1/q
AN = ( > 2ME(f, Lp)"> <. (3)
m=0

These classes have been introduced and investigated in [17]. However, in the
literature the interest has been concentrated on the periodic case. A good source for
those investigations and also concerning references is the book by Temlyakov [26].
We want to mention in this connection the paper of Burenkov and Gol’dman [7]
where these authors developed a technique to transfer results from R? to its periodic
analog and vice versa under certain rather weak conditions. This could be used to get
some of the following statements also in the periodic situation.

There are different ways to characterize approximation spaces. Usually, one tries
to construct an appropriate modulus of smoothness. This has been done by DeVore
et al. [11] in the situation considered here. Alternatively, following a general scheme
due to DeVore and Popov [10], the approximation spaces defined in (3) can be
characterized also as real interpolation spaces of couples of (fractional) Sobolev
spaces with a dominating mixed derivative. This is more or less a folklore-type result
but it paved the way to an application of interpolation arguments in the main part of
our paper, cf. Section 5.

Our main interest is twofold. On the one hand, we are looking for optimal
embeddings which relate the approximation spaces associated with (3) to the scales
Sl’;qu([R{Z) and S, F (R*). Here we can improve earlier results of Lizorkin and
Nikol’skij [17]. On the other hand, we deal with the approximation of functions with
dominating mixed smoothness by partial sums SZf with respect to hyperbolic
crosses. We are able to give a complete description of the asymptotic behavior of the
rate of convergence to f in the L,-norm if the function /" belongs to one of these

spaces S;‘qB(Rz) or S, F (R?). Here we extend results by Bugrov [7], Nikol’skaya
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[18], Lizorkin and Nikol’skij [17], and Temlyakov [25,26]. In both cases it turns out
that there is a rather sophisticated interplay with the microscopic parameter g¢.
Surprisingly, the largest subspace within the above scales contained in A;m([R@) is
always a space of Lizorkin—Triebel type.

This paper concentrates on the bivariate situation. Here our intention was to
reduce the technicalities and to increase the transparency of the arguments.
Moreover, we have the convenient reference [21] at hand (which concentrates on
d =2, too). Let us emphasize that the methods will apply also to the general
situation but we have not checked all details.

The paper is organized as follows. In Section 2 we recall the definition, properties
and some equivalent characterizations of Besov—Lizorkin—Triebel classes of
dominating mixed smoothness. In particular, we are concerned with embeddings.
Section 3 is devoted to the description of approximation spaces with respect to the
hyperbolic cross and its characterization as interpolation spaces. Next, in Section 4,
we collect some results on the interpolation of spaces of dominating mixed
smoothness which will turn out to be useful later on. The heart of the paper consists
in a detailed comparison of these three scales given in Section 5. Finally, we
investigate || f — SHf|L,(R?)|| for functions f belonging to either S;ﬁqB(Rz) or

r 2 : : r 2
S, ,F(R”) whenever they are not contained in 4, , (R%).

2. Besov-Lizorkin—Triebel classes of dominating mixed smoothness
2.1. Definition and some basic properties

Here we follow [21, Chapter 2] and introduce the scales of Besov—Nikol’skij and
Lizorkin—Triebel spaces of dominating mixed smoothness via the Fourier analytic
approach.

Let R" be the Euclidean n-space, by N we denote the natural numbers, Ny stands
for Nu{0} and by Z the integers. We write a~b if there exists a constant ¢>0
(independent of the context dependent relevant parameters) such that

clagbh<ea.

As usual, #(R") and &'(R") denote the Schwartz space of infinitely differentiable
and rapidly decreasing functions and its dual, the space of tempered distributions,
respectively. .# denotes the Fourier transform and % ! its inverse, both extended to
&' If necessary we indicate the dimension of the underlying Euclidean space like &
denoting the Fourier transform on R in that way.

We shall use smooth dyadic decompositions of unity. Let ¢, be an infinitely
differentiable function such that 0<p,(¢) <1, @y(¢) =1 if |7|<1, and ¢,(¢) =0 if
[t|>3/2. Then we put

(p(l) = @0([/2) - @0(07 (pj(l) = (p(z_j_‘—lt)a J=123 ... (4)
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Obviously
o0
Y e)=1, teR
j=0

and

0

=3 7l OF )

=0

if fe ¥ (R) (convergence in %'(R)). Similarly,

~.

3 i @j(x1)pi(x2) =1, (x1,x2)eR
j=0 k=0
and
Sxnx) =Y > F o (6)en(&) TS (61, E)(x1, %)
Jj=0 k=0

if f'e.#'(R*) (convergence in %(R?)). For later use observe

@ (=1 if 32/72<1|<2/, j=1. (5)
We shall use the abbreviations

fi=7o7f] and fix =7 o;(E) (&) TS (&1, &) (6)

First, we recall the definition of the Besov and Lizorkin—Triebel classes from the
Fourier-analytical point of view in the one-dimensional isotropic setting.

Definition 1. Let —oo <r< oo and 1<g< 0.

(1) If 1<p< 0, then we put
1/q
B, ,(R) =< fes(R) /B, <Z2”q||f|L |"> < o0

if g< oo and

B;,w(R)—{fey'(R):llle}; (R = sup 27| ALy (R )||<OO}-

J=0,1,...
<oo},

(ii) If 1<p< o0, then we put

L,(R)

1/q
(5 )

£, (R) = {fey’(R) S (RN = |
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<oo}.

Remark 1. We refer to the monographs of Peetre [20] and Triebel [27-29] for further
information.

if g< oo and

F, o (R) = {fey'(R) S (R =

up 27| 1Ly (R)

J=0

The classes of interest in this paper are the following.

Definition 2. Let —o0 <r< oo and 1<g< o0.

(1) If 1<p< 0, then we put

S, BR?) =1 fe S (R?) || f1S) ,BR?)]].

o0
J=0

(usual modification if ¢ = o).
(i) If 1<p< oo, then we put

1/q
3 z<f+k>w|mk|Lp<R2>|w> cu

o0
k=0

Sy F(R?) =13 fe I (R?) || f1S, ,F(R)]|.

o 1/q
- ( Z Z 2(1+k)rq|f/,’k|q> L,(RY)||< oo

=0 k=0

(usual modification if ¢ = o0).

Remark 2. The spaces S} ,F (IRz) are of peculiar interest. For reN and 1 <p< o0 an
equivalent characterization is given by f'€S) ,F (R?) if and only if

[ D00, DOf DUIf e L, (R?).
If r =0, then fengzF(Rz) if and only iffeLp(IRz)7 cf. e.g. [21, Theorem 2.3.1].
Hence, S} ,F (R?) are Sobolev spaces with a dominating mixed derivative (in the
sense of equivalent norms). If reR and 1 <p< co, then

1711+ G0+ &P P, RY)|

represents an equivalent norm on Sy, F (RZ). All spaces admit characterizations in
terms of mixed derivatives and mixed differences if r>0, cf. [21, 2.3.3, 2.3.4].
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Remark 3. Both, S;‘qB(Rz) and S]’,’qF(RZ) are Banach spaces. The norms are so-
called cross norms. This means

1/ (x0)g(x2) |8, B[R = ||f1B, (R [19]B, ,(R)| (7)
and
1/ (x0)g(x2)I Sy F(RO)| = | f1Fy (R [lg]F (R, (8)

respectively. These relations are sometimes helpful for a better understanding.

Remark 4. As for the history of these spaces we refer also to Amanov [1], Nikol’skij
[19], Lizorkin and Nikol’skij [17] and the survey Besov et al. [5].

Let us recall that some of these classes admit a so-called Lizorkin representation.
In this situation the means 9'*’1[(pj(£1)(pk(52)9'*f(51,52)](-) are replaced by
F pin(E1, E)FL(E1,E)](-), where the functions p; are defined as follows: let

P ={(x1,x2) : 277 \n< x| <27n, 27 n< || <27}, jkeN,
Pio = {(x1,x2) : 27 'n<|x1| <27, |xa|<m}, jeN,
POA—{()C],XZ) ‘X1‘<TE, 2k_17t<|)€2‘<2k7'[}, kGN,
Pog = [-m, 7] x [-m, 7. 9)
The corresponding characteristic functions are denoted by p; ;. Obviously, the P;
generate a pairwise disjoint covering of R? and

U P (10)

Jtk<m

Henceforth we shall use the abbreviation

Jiw(x) = 7 [P F S (E)](%). (11)

Proposition 1. Let —o0 <r< oo and 1 <p< 0.

(1) If 1<q< 0, then

S, BR?) = e (R%) || f1S) ,BR?)].

8

[}

1/q
= ( 2+ IIE,kILp(RZ)IIq> <o
=0 k=0
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in the sense of equivalent norms.
(i) If 1<g< oo, then

Sy F(R?) =13 fe S (R?) || f1S) ,F(R?)]|.

0 0 - 1/q
(Z Zz“*"”qurf) L,(RY)|| <
k=

j=0 0

in the sense of equivalent norms.

Later on we shall make use of duality arguments. To have a concise formulation
we introduce the closure of .#(R?) in these scales. Let Syt (R?) be the closure of
L (R?) in Slr,’qF(Rz) and let s;_’qb([REz) be the closure of ¥(R?) in S;ﬂqB(RZ),
respectively. Of course, these new spaces are equipped with the induced norms. If
max(p, )< oo, then s, f(R*) = S, F(R?) and s, b(R*) = S, B(R?) holds, cf. [21,
Theorem 2.2.4]. Without additional difficulties one can carry over the proofs of some

duality assertions given in [28, 2.11] from isotropic Besov and Lizorkin—Triebel to
the case considered here.

Proposition 2. Suppose 1<p< o0, 1<g< o0, and reR.

() In the sense of the duality pairing between & (R*) and &' (R*) we can identify the
dual space ofs;’qb(Rz) with Slij,B(Rz).

(i) Suppose 1 <p< co. In the sense of the duality pairing between & (R*) and &' (R?)
we can identify the dual space ofs;7qf(R2) with S[;fq,F(R2).

2.2. Horizontal embeddings

Here we are going to compare S B(R’) and S  F(R?). In a (r,1/p)-plane
this corresponds to horizontal straight lines. Sobolev type embeddings
would correspond to straightlines with slope 1 (in dimension one). For that reason
we shall call them diagonal embeddings. They will be investigated in the next
subsection.

Since the spaces are defined on the whole of R? it is clear that these classes are
incomparable for py #p;. For that reason we consider py = p; only. Clearly, we have
the monotonicity of these scales with respect to the microscopic parameter ¢g. This
will be used without further reference.

Theorem 1. Let 1<p< o0, 1<q, u< oo, and reR.

(1) Slr,ﬁuB(Rz) L»S;‘qF([Rz) holds if and only if u<min(p, q).
(i) Sr F(R*)<sSh B(R?) holds if and only if u=max(p,q).
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Proof. Sufficiency follows from the elementary inequalities
|| . |{max(1),q)(LP)||<H ' ‘LP((fj)Hg” : Mmin(p,q)(Lp)H' (12)

Necessity of the given conditions can be reduced to the necessity of these conditions
in the framework of the isotropic Besov and Lizorkin—Triebel spaces, see Remark 3
and [23]. O

2.3. Diagonal embeddings
Now we consider embeddings along lines with r — 1/p = const.

Theorem 2. Let 1 <py<p; < o0, 1<qo,q1< 0, and ro,r; €R. Suppose
1 1

ro——=7r; ——.
Po D1

D) o 2 v 2 iy iy
) Sy W BR7) S B(R) holds if and only if qo<q.

(1) Let py<co. Then S;g,q(]F(Rz)%Sl’;‘l)qu(Rz) holds for any pair qo, q;.

Proof. A proof of the sufficiency can be found in [21, 2.4.1]. The necessity in (i)
becomes again a consequence of the sharpness of the corresponding assertion for
Besov spaces B, ,(R), see [23], and Remark 3. [J

It remains to consider the mixed problem.

Theorem 3. Let 1<py<p< o0, 1<qy, q1< 00, and ry,r €R. Suppose
1 1

ro——=7r; ——.
Do D1

() Let py<oo. Then S” , B(R*) < S8"  F(R?) holds if and only if qo<p:.

Po,q0 P1,q1

(i) Suppose 1<po<co. Then Sy . F(R*)< S B(R®) holds if and only if po<q:.

Proof. Necessity of these conditions are obtained from the corresponding assertions
for Besov and Lizorkin—Triebel spaces, see [23], and Remark 3. Sufficiency in part (i)
can be proved by employing Lemma 1 below. The proof of (ii) follows by a duality
argument, cf. Proposition 2. [

Remark 5. As a consequence of the theorem it follows that under the above
assumptions the embeddings

Sy, BR) S F(R?)

Po.P1
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and

T 2 ] 2
S F(R) &S B(R?)

hold. These cannot be improved with respect to the microscopic parameters. In the
isotropic context these embeddings have been proved by Jawerth [14] and Franke
[13]. Both authors used real interpolation in a way which does not work here, cf.
Section 4.1.

Here we formulate the nonperiodic counterpart of a result by Temlyakov [26,
Lemma 2.2.1].

Lemma 1. Let 1<py<pi < oo. Suppose fi*e L, (R?) and
supp Zf* < {(&,&): |6]<27, |&|<2"), j keN,.

Then there exists a constant ¢ such that

ST | (R

Jj=0 k=0
I ol 1 p\ VP

<c<Z > (2(J+k)(”_0_p_l)IIfj’kILpo(Rz)|> ) (13)
=0 k=0

holds for all such sequences { f/** bk

Proof. Temlyakov works on the n-torus but this does not influence the argument.
Only one additional remark has to be made. Temlyakov formulated a weaker result
than he has proved. He stated (13) with

FRx) instead of >3 K ()|
Jj=0 k=0

=0 k=0

on the left-hand side. However, his arguments apply also in the form given here, cf.
in this connection [26, the formula at the bottom on p. 146]. [

Remark 6. Here we meet one of the situations where one could use the machinery of
Burenkov and Gol’dman [7] to carry over a known estimate in the periodic case to its
nonperiodic analog. However, the arguments used in the periodic situations have
obvious nonperiodic counterparts.
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3. Approximation with respect to the hyperbolic cross
3.1. Approximation by partial sums
Here we follow Lizorkin and Nikol’skij [17], but see also Temlyakov [25,26],

DeVore et al. [9] and Kamont [15].
A basic role will be played by

Spf(x) = F X&) FF(O)(x), meNy, feLy(R?), (14)
where
o [ L CeHy,
Zn(€) = {0, otherwise. (15)

In the language of Delvos and Schempp [8] the means SZf are the nonperiodic
counterparts of the pseudo-hyperbolic dyadic Fourier approximation. Observe

Hy _ E £
Sm f;;/ﬁ
JHk<m

cf. (11). Important for us will be the following version of the Littlewood—Paley
theorem: if 1 <p< oo, then there exist positive constants 4, and B, such that

Al 1Ly (R)]|< (Z

|
j=0 k=0

8

o0

12
filx ) Ly(R?)|[< Byl fILp(RP)| (16)

cf. [16,19] and the comments in [17].
Next, we recall a characterization of the approximation classes, defined in (3),
which was given in [17, Theorem 4.3]. We define a norm on 4, , by

1145, (RO = LA 1L (RO + 11 A1, (17)

cf. (3). With this norm A4, (I(Rz) becomes a Banach space. However, often it is more
convenient to work with ||| - ||| instead of the norm itself. If necessary, then we shall
also write ||| - \A;ﬁq([RRZ)H\.

Proposition 3. Let 1<p< oo, 1<g< o0 andr>0. Then A’p',q([Riz) is the collection of all
functions f € L,(R?) such that

1/q
1A% = (Z 2181 f SZfle(W)Hq) <. (18)

m=0

Moreover, there are constants A and B such that

AlllAN<IAF<BIA (19)
holds for all f € L,(R?).
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Remark 7. In fact, Lizorkin and Nikol’skij [17] proved a much more general
assertion since they introduced more general approximation spaces (replacing the
sequence of weights {27}, by more general sequences).

Remark 8. Let us consider a specific class of functions in AI’W(RZ). Suppose

f(x1,x2) = g(x1)h(x;) and supp Fhc|[—1,1]. Then Zk =0 if k>0 and there exist
positive constants ¢; and ¢, such that for all such functions f

c1llg|B, (R [121Ly (R)[| <lg(x1)h(x2) |4} o (RP)[|< 29| By, o (R)|| 17| Lp (R)]]
(20)

holds for »>0. This indicates that A;ﬁq(Rz) will share several features with Besov
spaces.

For —oo <9< o0 we put

Jof = 71+ 60+ 6P Ff(6L8), fed (RP).

Proposition 4 (Lift property). Let 0<r<oo, l<p<oo, 1<g< 0. Ifr+0>0, then
J_, is a linear and bounded one-to-one mapping from A;vq([Rz) onto A;ZQ([R@).
t1> 1/q

(21)

Proof. We have the equivalence (¢< o0)

o0

1o /14532 (R?)]| ~ ( >

m=0

Z yil[pi,kyzmj%)‘]wf] Ly(R%)

J+k=m

cf. Proposition 3. Let ¢;, j =0, 1, ... be the system defined in (4) and put
¢ =0, 1+ ¢;t¢i, (p_;=0).
It follows by (16) and the properties of the ¢; that

q> 1/q

1/2
( > |f-1[zw‘<1+|él|2>0/22@k<1+|522>0/2p,,kff1<x>|2) L, (R?)]].

J+k=m

H( S F [ F BRI ]| L, (R)

JH+k=m

<(4,)”"

Using the identity
FRIU+ 1) P24 (1 + &) i f1(x)
= F PRI+ (6,02 (1 + 1&P) e (&) Fhia(Er, &)](x)



126 H.-J. Schmeisser, W. Sickel | Journal of Approximation Theory 128 (2004) 115-150

the right-hand side can be estimated by

1/2
c<znm@ L,(®)

Jjt+k=m

using the vector-valued multiplier theorem (Theorem 1.10.3(i1)) in [21]. Inserting this
into (21) we obtain

[[-of 145 (R2)[| < el f147 , (R?)]]

using again (16). The same arguments give

1o 14} o (R <l £14, 5 (R2)]]

and the proof is complete. [

3.2. Real interpolation of approximation spaces

Next, we shall make use of the interpolation theory of abstract approximation
spaces, which is due to DeVore and Popov, cf. e.g. [10].

For basics of real interpolation we refer to Bergh and Loéfstrom [4] and Triebel
[27].

Proposition 5. Let 1 <p< oo, 1<g< 0, and ry,r; =0 such that ro#ry. Let 0< O < 1.
We put r = (1 — @)ro + Ory. Then

(SpaF(R?), S;HF(R?)) g, = A ,(R?).

Proof. By the lift property of the spaces A;_q([Riz) and S}, F (R?) it is sufficient to
consider the case ryp = 0 and r; = r. We define X, = {0} and

Xy,={feL, suppZfcH,}, m=12 ...
It is easily checked that this scale satisfies the assumptions in [10, Chapter 7, Section

5]. Based on the Lizorkin representation, cf. Proposition 1, and using the
Littlewood—Paley assertion (16) we derive immediately a Jackson type inequality

1/2
||f_SZf|Lp(R2)||<(1/Ap) < Z |f;k|2> LP(RZ)

J+k>m

<@ £1;,F(R)|

valid for all feS),F (R?), r>0. Furthermore, by similar arguments the Bernstein
type inequality

17185 2 F (R?)[| < 2™ || f1L, (R?)]|
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is valid for all f € X,,,. This is sufficient to apply the scheme of approximation spaces
with X = L,(R*) and Y = S} ,F(R?), cf. [10, Chapter 7, Section 9]. [J

Remark 9. The counterparts in case of hyperbolic spline approximation on the cube
and hyperbolic wavelet approximation on R” have been proved in [9,10].

As a direct consequence of the preceding proposition one obtains the following
result on interpolation of approximation spaces, cf. [10, Theorem 7.9.1, formula
7.9.7].

Proposition 6. Let 1<p< oo, 1<q, q1<o0,and 0<ry. Let 0<O < 1.

(1) We put r = Ory. Then
(Lp(R?), 47, (R))g,, = 4, ,(R?).

»q1

(i) Let 1<qp< 0 and 0<ro<ry. We put r = (1 — @)rg + Ory. Then
(Ap, (R, 47 (R)) g, = A (R?).

P90 g1

4. Complex and real interpolation of spaces with dominating mixed smoothness

Here we mention a few results about interpolation which will be useful in proving
mixed diagonal embeddings.

4.1. Real interpolation

Proposition 7. Let 1<p< o0, 1<qy, qi1 <0, and ro,r1 €R. Let 0<@<1. We put

1 1 1
r=(1-0)ry+0r, and -=(1-0)—+6—.
q 90 7

Then

(Sp B(R?), Sl B(R?)) g, = S, B(R?).

Proof. As in [27, 1.2.42.4.1,24.2] or [4, 6.4] the proof is reduced to the
interpolation of certain vector-valued sequence spaces by means of retraction and
coretraction.
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Let {¢;}; be the system of functions defined in (4). We put
(&) = (&) + ¢1(9)
0 (&) = 01 (&) + 0 ($) + 01 (8), k=1,2,...,
0 x(C1,&62) = 0i(&1)ek (&), J,k=0,1,...,
?;1(1,8) = ¢;(&)er(&2), Jk=0,1,... .
If f €. (R*) we define

S/(x) = {707 f1(x)}

For gjxe %' (R?), j,k = 0,1, ... we define (formally)
o0 o0

R{gjit;x = Mo i) (x)
j=0 k=0

o0

jk=0"

if the double series on the right-hand side converges in . (R?). Obviously, we then
have

R(Sf) =1
We introduce the sequence spaces
o 1/q
£y(No, X) = {xj}jiocX: [[{x;};1¢5(No, X)[| = < ; 2r.ff1|xj|X||q> <0
Jj=

and
/;(N§7X) = /r(N()a/' (NO; X))a

where X is an arbitrary Banach space, reR and 1 <¢< co (modification if ¢ = o0).
Now, by definition of the spaces S is a linear and bounded operator

S: Sy, B(R?) - /1 (NG, L,(R?)) (i =1,2).
On the other hand, we have the boundedness of
R: /7 (NG, Ly(R*)—> S B(R?) (i=1,2).
This can be seen as follows. We observe that
1R }41S).q BRI

0 0 1/q
S (z S grtion| 7 1[mj.,k@j+/,k+mfgwm}|L,,<R2>\y%) |
|/\ Im|<1 j=0 k=0

where g;x and g; are zero if j<0 or k<0. The L,-norm on the right-hand side can
be rewritten as the norm of a convolution and estimated by

|G em Lo (R)]|
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(where ¢ does not depend on g¢,/, k) such that
1R{gj4 3418y 4 BRI < el {9}, 147 (NG, Ly (R2))]]-

Let r=(1-0)rg+0Or; and 1/g=(1-0)/q+O/q; and X = L,(R?). Let us
recall the well-known formula ([4] or [27])

(e (No, Yo), 25 (No, Y1))g , = ¢4, (No, (Yo, Y1) ,),

where (Yo, Y}) is an interpolation couple of Banach spaces. Iterated use of this
formula leads to

(7 (N2, X), /1 (N3, X)), = £1(N3, X),

and proves the proposition. [

If one compares this result with the corresponding formula for Besov spaces

(Brw Blu)og =By 1=(1—0)o+0r, n#n,

P>490° T Psq1 Pq’

cf. e.g. [4, Theorem 6.4.5], then the greater flexibility of this formula with respect to
the microscopic parameters ¢, ¢; and ¢ is obvious. For us it was a bit surprising that
real interpolation connecting the classes of interest here requires much more
restrictions. To support this we prove an instructive lemma. To have a concise
formulation we introduce the following abbreviation. Let S, , stand for one of the

classes S;‘qF(IRZ) and S};’qB(R2). If several spaces Sp . S}l ... occur, then they
may be taken from different scales. Let A, B be an interpolation couple of Banach
spaces and let 0<® < 1. By (4, B, ®) we denote an interpolation space of 4 and B
which is generated by an interpolation functor of type @, cf. e.g. [27, 1.2.2]. In
particular, this applies to real and complex interpolation with respect to the

parameter ®@. Under these restrictions the following is true.

Lemma 2. Suppose 1 <py,p1 < oo and ro,r; €R.

(1) The embedding
(S g0 Sprq1©) =S, 4

20,407 T P1,q1°
implies
1 1-0 6
-< +—
q q0 q1

(i) If we replace in (i) one or two of the spaces Sy .. S . or S, by the
corresponding approximation spaces A 7qO(R2), A;‘]’q]([F@Z) or A;’q(Rz), respec-

tively, then the conclusion is
1 1-60 6
_|_ J—

~= ~

40 q1
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where

q=

~ q, in case of no replacement,
2 otherwise.

Proof. We employ test functions defined as follows:

m—3

gm(X1,x2) = Z ocjf_l [W(& — 2/, & — c'2’"‘-’)](x), m=6,7,...,
=3

where i € (R?) and supp Zy = {¢ : |¢|<1}. The constant ¢ = 7/8 is chosen in such
a way that it simplifies the norm of g,, as much as possible (cf. (5)). We have

m—3 1/q
1gm| Sy, F(RO)|| = [lgmlS) ,B(R?)|| = IIfllﬂle(Rz)IIZmr( > |O<j|"> :
=
Further, there exist positive constants ¢; and ¢, such that
m—3 ) 1/2
r 2 ¥ r 2
clllgml4; ,(R )II<2””< > 1l ) <alllgml4, (R,
=3

cf. Lemma 4. The interpolation property and the continuous embedding
(83 4s Sph 415 ©) =S, imply the inequality

P0:907 ~P1,q17°
-0 @]
m—3 1/q m—3 q0 m—3 q1
Doyl <el D lwl® > layl™
=3 =3 =

with a constant ¢ independent of m. This proves (i). The proof of (ii) is similar. [

There is a further interpolation formula well-known for the isotropic classes which
has a counterpart in our situation.

Proposition 8. Let 1 <py<pi< oo, l<q< oo, andreR. Let 0<O <1. We put 1/p =
(I =0)(1/po) + ©(1/p1). Then

(S, F(R?), S, F(R?))g, =S) F(R?). (22)

0.4 e A W]

Proof. We use the operators S and R defined in the proof of Proposition 7.
Let 1<p<oo and 1<g< oo. It is obvious that the restriction of S is a linear
bounded operator

S: Sy F(R) > Ly(R?, £,(Ng)).
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Moreover, it is clear by definition of the g;, that (at least formally)
R(Sf)=f forall feS) F(R?)

holds. We show that R : L,(R?,7,) r—»Sg’qF(le) is bounded. By using the properties
of supp ¢;, we have

1R g14}j4 1) o F (R?)]]

0 1/q
< > <Z |97‘koj,kQH/,H,H%W,HA<x>|‘f> L,(®)],
|/],lm| <1 J k=0

where g;x =0 if either j<0 or k<0. Applying a well-known assertion on
convolutions, cf. [24, 2.2, p. 56/57] the right-hand side can be estimated from above
by

w 1/q
¢ <Z <Mg,»,k>‘f<x>> L),
jk=0

where M denotes the Hardy-Littlewood maximal function. The vector-valued
maximal inequality of Fefferman and Stein [12] yields the desired boundedness if

l<g<oo.If g= oo we use
M( sup Igj|>(X)
j

and the scalar Hardy-Littlewood maximal inequality. Now, the desired formula in
case r = 0 follows from

(Lﬂo (4), Ly, (A))@,p = L[?(A)v 4= /q(N%), (23)

Ly(R*)||< Ly(R?)

sup (Mg;)(x)

where 117 = 1;—09 +le (cf. [27, Theorem 1.18.6/2] or [4, 5.1]). The general case r#0 is a
consequence of the lift property of the spaces under consideration, cf. [21, 2.2.6]. [

Remark 10. In addition to the proof of (22) let us note that
S:S) F(R*)—Ly(R*, /1), 1<p<oo.

Moreover, (23) is true also for 4 = /. Hence, by interpolation
S: (S F(R?),S) ([ F(R?))g,— Ly (R, /1)

o1 »2pi,l
This leads to

1181 F (RO = (1S 1Ly (R, £1)[| <l | 1(Sp, 1 F(R?), S, 1 F(R?)) I

In other words, using again the lift property of the spaces, we have the embedding
. 1 1 1

(S5, 1 F(R?),S), (F(R))g, < S, F(R?), b (1- @)p— +o (24)
' ’ 0 1

which will be sufficient for our later purposes as a replacement of (22) if ¢ = 1.
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4.2. Complex interpolation
For completeness we also state some results on complex interpolation.

Proposition 9. (i) Let 1<po,p1< o0, 1<qo,q1 <00, and ry,r €R. Let 0<O@<1. We
put r=(1—0O)ry+ Ory,

1 1 1 1 1 1

-=1-60)—+0— and - =(1-0)—+60—.

p Do D1 q q0 q1
Then

Sy B(R?), S B(R*)]g =S, B(R).

(i) Let 1<pg,p1 < o0, 1<qo,q1 < o0, and p,q,ro,r1,r, © as above. Then
(ST F(R?),S" F(R*)]y =S F(R?).

P90 [y 2t y20

Proof. As in proof of Proposition 7(i) is reduced to iterated use of the interpolation
formula

[/ (No, Xo), 75 (No, X1)]g = £ (No, [Xo, Xi]p),
whereas (ii) is reduced to

[LP()(R27 Y0>>LP1(R25 Yl)]@ = LP(Rza [YO, Y1}9)7

by means of the arguments in the proof of Proposition 8. [
. . 2 . 2 2
5. A detailed comparison of A} (R°) with S| B(R") and S} F(R")

This section is the heart of the paper. Here we clarify the somewhat complicated
relations between the approximation classes on the one side and the spaces of Besov
and Lizorkin—Triebel type on the other.

5.1. Preparations—classes of test functions

We shall investigate two different types of test functions. On the one hand, we
study the nonperiodic counterpart of the Dirichlet kernel with respect to the
hyperbolic annuli H,,,\H,, and on the other hand the nonperiodic counterpart of
lacunary series.

Recall, p;; denotes the characteristic function of P;.

Lemma 3. Suppose 1 <p< oo and 1<g< 0.
(1) There exist positive constants c; and cy such that

Z yil[pj,mfj]
Jj=0

Clml/p2n1(lfl/p)< LP(RZ) <C2m1/172m<1*1/17) (25)

holds for all meN.
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(ii) There exist positive constants ¢ and ¢, such that

eim! 12 < || sup f—‘[pj,mjan(Rz)H
0<j<m
m
< {13217 (i | Ly (R2) || < com/p2mi=1)
j=0

holds for all me N.
(iii) Define

fm(x) = Z 2—!‘szl(1/p—l)y—lij?Fj’ meN.
=0

Then there exist positive constants ¢, and ¢, such that
am < fulS] BED) [ <eom'® (reR),
am? <[\ flS; F) | <cm'’? (reR)

and
am"? ||| ful 4y, (R[S cam'? - (r>0),

holds for all meN.

133

Proof. Step 1: In what follows, we need the L,-norm of the functions # 'p;.

Clearly, if j,k>1 a homogeneity argument gives

||3771pj,k|Lp(R)|| — 2/(1=1/p)ok(1-1/p)

(31)

A similar equality holds for the pairs (0,%), k=1 and (/,0),/>1. To prove the upper

estimate we employ Lemma 1. For 1<g<p< oo it follows

m

m 1/p
Z |7~ pjmil | L (Z 2’ (q p) 17~ pjmilLy (Rz)Hp)

(@( Pel)”

1/p m(l—[l))
< csm P2 .

The estimate from below in the L,-norm turns out to be a consequence of the
estimate from above in case p’, of the exactness of the L,-result, an orthogonality
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argument and Holder’s inequality:

m
(m+1)2"n* = Z T i) |L2(R?)
=0
a 1 2
- / T D) ()
Jj=
m
/ sup 17 i A S 1F [Py (6)] dx
0<j<m =0
m
< || sup |?7[/M/”L (R?) Z [pjm—j]l Ly (R )‘
0<j<m j=0

< em!P 2V sup |7 ]Iy (RP)] -

0o<j<m

This proves (26) and at the same time (25).
Step 2: Due to Proposition 1 and (31) we have

1/q
1S, BR) ||~(sz'/ﬂ - [pj,mj1|Lp<R>||q)

~m'e.
The equivalence in (30) turns out to be an immediate consequence of Proposition 3

and part (i). To verify (29) observe

m

|| finl S5 F (R?)[| ~2m(1/P=D) <Z

Jj=0

1/q
7! [pj,mj“q> Ly(R)||~m'7?

because of (ii). The proof is complete. [

Remark 11. The main ideas of the proof of the preceding lemma are taken from [26,
Lemma 1.1 in Chapter 3]. There two-sided estimates of the L,-norm of the Dirichlet
kernel with respect to the hyperbolic cross are given.

Remark 12. Also in this situation one could use the technique of Burenkov and
Gol’dman [7] to carry over the estimates from the periodic situation to the
nonperiodic one. That would result in the estimate from above in (25). For that
reason we decided to give a complete proof by repeating (partially) the arguments
from the periodic case. Vice versa, referring again to [7], the contents of Lemma 3
can be carried over to its periodic analog.

Even more simple are the following nonperiodic counterparts of lacunary
series. We start with a function e (R?) satisfying supp Zy<{¢:|¢<1}.
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Then we put

o0

L0 =33 mur e - @6 - () (32)

=3 k=3
for a given sequence o = {&;x };, of complex numbers. For ¢ = 7/8 (cf. (5)) we have

7oy (E)Pu(E) Ffol&1, E))(x) = oy (F ) ()2 1)
if j, k>=3. This implies the following.

Lemma 4. Let 1<g< .

(1) Suppose 1<p< 0. We have
1/518;  F (RO =1 £21S;,, BR?)|

© o 1/q
=17 Y |L, (®) ||< D2 ”"%,kﬁ) :
Jj=3 k=3
(i1) Suppose 1 <p< oo. Then there exist positive constants ¢ and c; such that
m—2 5 a/2 Va
2 -2
cill| fal 4} (R[] < Z 2 [Z |9%m-j1 ] <alllful 4, (RO
j=3

Proof. Part (i) is obvious. To show (ii) we use Proposition 3. We have
1/2
2
Ry —Srﬁlﬁcle(Rz)I%( D ol )
Jtk=m+1

by the Littlewood—Paley assertion (16). From that the claim follows. [

5.2. Horizontal embeddings

We fix the smoothness parameter r and the integrability parameter p and
investigate the influence of the microscopic parameter g.

Theorem 4. Suppose 1 <p< oo, 1<q, u< oo, and r>0.

() Let g<p. Then S, \F(R*) ¢ A}, holds.
(11) Let g=p. S, ,F(R") > A],  holds if and only if u<min(2, q).
(iii) Let g>p. Then A;’qQS;mF(IRz) holds.
(iv) The embedding A, , < S, ,F holds if and only if ¢<p and u>=max(2,q).
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Proof.
Step 1: Proof of (i). Remarks 3 and 8 show that the embedding

S F(R*) < 4! (R*) would imply F; (R)<s B, (R). But this is known to be not
true under these restrictions, cf. [23].

Step 2: Proof of (iii). We argue as in Step 1. The embedding A;yq(Rz) L>S[’,7OCF([R€2)
would imply B, (R)<F, , (R). But this is known to be not true under these
restrictions, cf. [23].

Step 3: Proof of (ii). Sufficiency. We employ the elementary inequality (12) and the
Littlewood—Paley Theorem. Using ¢=p this leads to

2" N fimei|fq(Ly(R?))
Jj=0

1/q

0 m _ 4/2
<(I/Ap) Z zl‘mq< Z |f7'"fi2> LP(RZ)
m=1 =0

- m 1/u
<(1/4,) (Z > 2 A") L,(R?)

m=1 j=0

which guarantees the continuous embedding

Proposition 3.
Step 4: Proof of (ii). Necessity. We employ the family of functions from (32). With

Bix = 20+krg, . the embedding S;,MF([RZ) & A;, , yields the validity of

0 q/2 1/q 0 0 1/u
Z( > |5j,k|2> C( > |ﬁj,k|u>
=

m=1 \ j+k=m+1 j=3 k

2 r 2\ :
S, F(R) o4, (RY) in view of

for arbitrary f;, cf. Lemma 4. But this is true if and only if u<min(2, g).
Step 5: Proof of (iv). Sufficiency. Suppose ¢<2<p and let u = 2. We have

w mo 1/2
( 32 3 i ) L)
m=1 Jj=0

. m 1/2
rm 7z 2
<| X2 (Zomm_.,w) 1,(R?)
]:

m=1

n 172

me/

cf. (12) and (16). The claim follows from the monotonicity of the /,-norms,
Proposition 3 and the Littlewood—Paley assertion (16). Now we consider the case

< p(ZZZIm

m
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2<g<p and u = ¢q. Then

© m 1/q
( 2D lﬁ,m—jl"> Ly(R?)
1 j=0

m=

0 m 1/4 o e
<[ > 2™ (Z@,mjrf) Ly(R?)

m=1 Jj=0

" m 1/2 g\ /g
<{ X (ZOM}M_./P) Ly(R)

m= Jj=

Ly(R?)

m a\ /4
D fim ) :
=0

Step 6: Proof of (iv). Necessity. An application of Lemma 4 shows that the
embedding A;,Q(Rz) S, F (R?) implies the existence of a general constant C such
that

o0
<Bp< Z 2rmg

m=1

1/q

o [m=2 q/2
||ﬁjvk|/”||<c Z lz |ﬁj,mj+l|2‘|

m=1 | j=3

holds for all sequences {f;}; . But this implies u>max(q, 2). The necessity of g<p
follows from part (iii). [

Theorem 5. Suppose 1 <p< oo, 1<q, u< oo, and r>0.

(i) The embedding Sj ,B(R*) < A}, (R*) holds if and only if u<min(2,q,p).
(i) The embedding A;_’q([l%z) @SZYMB(Rz) holds if and only if uzmax(2,q,p).

Proof.

Step 1: Proof of (i). Necessity. The necessity of u<min(2, g) follows as in Step 6 of
the proof of Theorem 4. To prove the necessity of u<p we consider the functions
introduced in (27). From (28) and (30) the desired result follows.

Step 2: Proof of (ii). Necessity. The necessity of u=p follows from (28) and (30).
Further, the necessity of u>max(2, g) can be derived by using Lemma 4.

Step 3: Proof of (). Sufficiency. We make use of our elementary inequality (12)
and of the Littlewood—Paley assertion. With u<¢t = min(2, p, ¢) we find

o 1/q
< D2 SHLf - SZfle(R2)||q>
m=0
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g\ 1/4

. N 1/2
<c ZZ’“”"( > |ﬁ.,k|2> L,(R)

m=0 Jthk=m+1
1/q

. B q/t
< 22”1’4’( > ||ﬁ.kLp<R2>||’>

m=0 Jtk=m+1
<1718}, BR)]].

Step 4: Proof of (ii). Sufficiency. Using max(2,p)<u we find || - |£,(L,(R*))||<]| -
|L,(R*)(£2)]|| (see (12)). Now we apply (16)
u> 1/u

0 m _ 1/u 0
(S 2 S immr) < 32
m=0 Jj=0 m=0
u> l/u

The final step consists in using the monotonicity of the /,-spaces and u>¢q. [0

L,(R?)

m 1 / 2
> 2
[z o }
=0

.
< Bp( Z Qrmu

m=0

Z prjv}mfj|Lp(R2)
j=0

Of particular interest is the case ¢ = oo. We formulate some simple consequences
of Theorems 4 and 5 and 3(1).

Corollary 1. Suppose l1<p< oo, 1<q, u< oo, and r>0.

() The embedding S;WB(IRZ) A, (R?) holds if and only if u<min(2,p).
(i) The embedding S;,uF([Rz) Ay, (R?) holds if and only if u<2.
(i) Whenever Sy B(R*) <Al (R?) holds, then S}, ,B(R*) < S;, ,F(R?).

Remark 13. Hence, within the scales of Besov and Lizorkin—Triebel classes the
optimal embeddings for 4), (R?) are:
ST F(R) A, (RS, B(R). (33)

The right-hand side in this formula can be found in Lizorkin and Nikol’skij [17,
Theorem 4.1]. The “if-parts” of (33) have been known in different contexts, cf.
[9,15,25,26].

Quite similarly one can deal with the other extremal case A};yl([F\Rz).

Corollary 2. Suppose 1 <p< oo, 1<q, u<oo, and r>0.

() The embedding A5 (R?) (—>S[';JAB(R2) holds if and only if uzmax(2,p).
(i) The embedding A, (R?) L»S;IVMF(IRZ) holds if and only if u=2.

(iil) Whenever A;’I(R2)<—>SI’;’MB(IR2) holds, then A;_I(Rz) L>S;72F([R€2)L>S’ B(R?).

p.u
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Remark 14. The only Besov space which is a subspace of A}‘,J(IRZ) is given by
S;le([R?z), cf. Theorem 5. Hence, within the scales of Besov and Lizorkin—Triebel

classes the optimal embeddings for 4 | (R?) are:

Sp B(R?) & A) | (R & ST F(R).

Remark 15. Lizorkin and Nikol’skij [17] investigated the relations between A;_’q(Rz)

and S;qu(Rz) (with coincidence of the microscopic parameter q).

Based on the above investigations it is now quite easy to understand under which
conditions the approximation classes are particular spaces of Besov or Lizorkin—
Triebel type of dominating mixed smoothness.

Corollary 3. Suppose 1 <pgy,p1< oo, 1<qo,q1 <00, r9>0 and r,reR.

() The classes A[r,?)vqo([R{z) and S ,q]B(Rz) coincide if and only if ro = r, po = p1 = 2,
and qy = q = 2.

(i) The classes A;,%,qo(Rz) and S;;‘l’qu([Rz) coincide if and only if ro = r1, po = p1 = 2,
and gy = q, = 2.

Proof.
Step 1: Let p=¢ =2. Then we may apply Proposition 3 and use the pairwise

orthogonality of the ]”;k to obtain
1S f = SHfIL(R)IP = > (Il LR

J+k=m+1

Step 2: We assume coincidence. Then, using functions of type (32) we derive
ro = r1. Considering functions of type (27) we conclude py = p; whenever both
belong to (1, 00). It remains to clarify the g-dependence. But here we can use
Theorems 4 and 5 to prove the claim. [J

5.3. Diagonal embeddings

As in case of Besov and Lizorkin—Triebel classes we shall derive diagonal
embeddings for the approximation spaces and also mixed assertions of such a type.
Our main tool will be real interpolation.

Diagonal embeddings in the isotropic situation are well-understood, cf. e.g. [23].
Taking into account Remarks 3 and 8 this implies that the embedding

ro 1
Posq0 JARU)
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(here X, Y denote elements of either the S — B-, S — F- or A-scale) implies
1 1

po<pr and ry——=r ——.

Po P1

For po<p; we only deal with the limiting situation ro — 1/po =r; — 1/p;.

Theorem 6. (i) Let ry>0, reR, and 1 <py<p< oo, such that

1 1
ro——=7¢V——.
Do p
Then it holds
2 2
A;‘;F(R )%S;’qF([Ri ) (34)

Jor all g, 1<q< co. Furthermore Ay (Rz)(ZS[’) LF(R?) if go>p.
(i1) Let r,r1 >0 and 1 <p<p; < o0, mch that

1 1
r——=r —-—
Pl
Then it holds
S F(R) o an (R (35)

Jor all g, 1<q< co. Furthermore S, | F(R e A5 ( R?) if q1 <p.
Proof.

Step 1: To prove (34) we may assume g = 1. Let ro,r and 1 <po<p be given. We
choose p* and p** satisfying py <p™ <p <p* < 0. Next, we choose @, r*, and r** such
that

1 1-6. 06
p p o p
1 1
P —=r——
Po V4
W Lo
Po P

Then we have ry = (1 — @)r* + Or**, see Fig. 1.
Theorem 2(ii) yields

S, (RS (F(R?) and S, F(R*) < S F(R?).
By real interpolation, cf. Proposition 5, it follows therefrom
A;J[()) P( ) (S;?o 2 ( )’ Szlm 2 (Rz))@,p
— (S;an(Rz),S;*alF(Rz))@,p

(24)
< Sp,lF([Rz).

This proves (34).
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1
P

Fig. 2. Real interpolation in Step 2 of the proof.

Step 2: To prove (35) we may assume ¢ = oo. Let r,r; and p,p; be given. We
choose p* and p** satisfying 1 <p** <p<p*<p; < oo. Next, we choose @, r*, and r*
such that

1 1-0 o
p p o p
1,
p* 2%
1, 1
F——=rT =
V4 D1

Then we have r; = (1 — ©)r* + Or**, see Fig. 2.
By real interpolation, cf. Proposition 8, and using Theorem 2 it follows therefrom

Sy JF(R?) =(S).  F(R),S). ,F(R?))g,

P, » M p* oo

S ( ;j,zF(R2)7 ;iZF(Rz))@,p

_oyqr 2
=4, ,(R%).

This proves (35).
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Step 3: The optimality of embeddings (34) and (35) follows from the optimality of
By (R)>Fy (R) and of F) (R)< B (R), respectively, cf. Remarks 3, 8 and
23]. O

Next, we compare the approximation spaces along these diagonals.

Theorem 7. Let rg>0, reR, and 1 <py<p< oo, such that

1 1
Fp——=17r—~—
Do P
Then it holds
7 2 r 2
AP?»Q()(R )(_)AIMI(R ) (36)

if and only if qy<gq.

Proof.
Step 1: Sufficiency. We use Theorems 6 and 4(ii) to derive
; . 1 |
A (RS F(R) S A (R, po<p, i e ti — = 1,2.

The general result follows now by real interpolation because of
Ap ((R2) = (4, (R?), 47 (R)) g, < (4}, (R?), 472, (R?))g, = 4, ,(R?),

Po-q DPo.p Po.p

where ro = (1 — @)r| + Or,, cf. Proposition 6.
Step 2: Necessity. We use Remark 8 and the necessity of ¢o<¢q in case of the

embedding BY | (R)< B, (R), cf. [23]. [

Remark 16. Theorem 6 shows that in Theorem 3 the spaces S;;';_‘%B(Rz) can be
replaced by A;fi,qi([Riz), i=0,1. Moreover, it follows from Theorem 7 that the
approximation spaces themselves behave like the spaces S;qB([R{z) with respect to
embeddings with constant differential dimension (cf. Theorem 2).

A comparison of the approximation spaces with the Besov spaces is more
sophisticated.

Theorem 8. Let rg>0,reR, 1<q, qo< o0, and 1 <py<p< oo, such that

1 1
g —— =170 ——.
Do V4
Then it holds
¥ 2 r 2
Ap%,qo(R )CASP‘qB(R ) (37)

if and only if max(po, g0) <¢-

Proof. To begin with we investigate sufficiency.
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Step 1: Let go<po. Then Theorems 4(iv) and 3(ii) yield
A (RS0 F(RY)<S)  B(RY).

Po:Po PPo

Hence, if ¢=po we have A;}é,qo(Rz)%S[r,ﬂB(Rz).
Step 2: Let pg<qo and go=>2. Then Theorems 5 and 2(i) yield

g 2 r 2 r 2
Ao (R S Sy a0 BB © 54, BR)-

Hence, if ¢>¢o we have A;%ﬁqo([Rz) C—>S1';_’qB([R2).
Step 3: It remains to consider 1 <py<qo<2. Now we use real interpolation. We
choose 0<® <1 such that 1/qp = (1 —0)/2+ ©/py. Next, we choose positive

numbers ry, 7y, t; and ¢, such that
rg = (1 —@)rl 4+ Ory, riF#ry, r= (1 —@)ll + Ot, tH#0h

and
1 1 1 1
I——=0O—— hnh——=0O—-
Po p Po p
Then
r 2 r 2 ¥ 2
(Apln,l(R )7Ap20,l(R ))@,qo = Ap%,qo(R )7

cf. Proposition 6. Furthermore, Proposition 7 yields

(S),B(R*), S, B(R*)) g, = S, B(R?).

p.2 7 pipo D490
Observe

Al

N (RS S B(RY) S, B(RY) and - A7 (R <SP, B(RY),

P:Po P:Po

see Step 1. The monotonicity of the real method yields the conclusion.

Step 4. Necessity. Our standard argument, cf. Remarks 3 and 8, yields the
necessity of ¢y <gq. Further, our test functions from Lemma 3 prove the necessity of
po<gq. U

Theorem 9. Let r,r1>0 and 1 <p<p;< oo, such that

1 1

r——=r —-—.

() If 1<q<p it holds

r 2 r 2
S, BR) A4, (R). (38)
If g1 <gq, then S'j;‘qB([Rz)(ZA;'hq1 (R?).
(i1) Suppose p<q< oo. We have
S BR?) Al (R). (39)
If p<p1<gq, then S;_’qB([Riz)czA;‘,‘lm([Riz).
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Proof.
Step 1: Proof of (i). We already know

ST BR*) Ay (R 47 ((R?) and

P11

SI’;J,B(RZ) = S;_J,F(Rz) AT (R?), (40)

pup

where we used Theorems 5(i), 7, and 6(ii)). Now we continue with real interpolation.
For given ¢, 1 <g<p, we choose 0<® <1 such that 1/¢g = (1 — @) + ©/p. Next, we
choose positive numbers r;, r3, t; and ¢, such that

7:(1—@)l1+@lz7 1 #1t, r :(1—@)72+@73, ry#r3

and
1 1 1 1
hW——=rn———, h——=r3——
D1 V4 )4
Then
(S)' | B(R*), S, B(R)) g, = S; ,B(R?)
and

(A 1 (R, 47 (R*)) g, = A ,(R?),

cf. Propositions 7 and 6, respectively. The monotonicity of the real method and (40)
yield the conclusion.

The second statement in part (i) follows from Remarks 3 and 8.

Step 2: Proof of (ii). Sufficiency follows from

Sl';_’qB([REz)L»S;tlF([RR2)L>A;{q([R2), (41)

cf. Theorems 3(i) and 4(ii). From the embedding S;,qB([RZ) sS4 (R*) and Lemma
3 we derive g<p;. O

5.4. Applications to approximation in different metrics

Let X, be either A;7q(R2) or S;qu([Riz) or S[’;"qB([Riz). We are dealing with the
question which of these classes have the property that f'e L, (R?) and
Eun(f,Ly)<c2™™, m=12, .., (42)

where r; >0 is given. Of course, this holds if and only if X, & A4}) (R?). In view of
the preceding subsection the answer is easy, now.

Corollary 4. Let 1<p<pi< oo and r1>0. Let 1<g< 0.

() (42) holds for allfeS;’qF([Rz) if and only if

rzr— (%—})) (43)
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(i) Eq. (42) holds for all f €S, (Rz) if and only if either

G-
r>r —|(——-—
1P
and q is arbitrary or
Gi5)
r=r—|——-).
1P
and q<pi. Moreover, if (42) holds for allfeSzr,’qB(le), then
lim 2™ Em(f7 171) =0

for allfeS]’wB([R{z).
(i) (42) holds for allf'eA;,q(Rz) if and only if (43) holds.

For better reference we state also the embeddings of A;"q([Rz) into L, (R?) and
C(R?), respectively. Here C(R?) denotes the space of uniformly continuous and
bounded functions on R? equipped with the supremum norm.

Corollary 5. Let 1<p<p;< o0 and 1<g< 0.

() The embedding A;_’q([RZ) < L, (R?) holds if and only if either

1 1
P>———
P D
and q is arbitrary or
1 1
r=—-—— and q<p.
P D

(i) The embedding Ay, (R*) < C(R®) holds if and only if r>1/p.

Proof. Part (i) is a consequence of S 2F (R?) = LPI(RZ) (equivalent norms), cf.
Remark 2 and Theorem 6. The sufﬁ01ency part in statement (ii) follows from

A4 (RS BR)SSBRY) SO | BRY), r>1/p,
cf. Theorems 5(i1) and 2(i). To derive the necessity we shall use once again our test
functions defined in (27): we have

1 m—j—1
Jj-1 m—j—1, sin(2/~ 7x)sin(2 X2
§ 2~ rmzml/p 13712 x1+2 X2) ( ) ( ), meN.

X1X2
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Obviously, if r = 1/p, then

m

m i b
| fonl Lo (RO)]] = [ £3n(0,0)] = 2m27" Y~ 277+ '=§(M+1)-
=0

Lemma 3 shows that 4)//(R?*) @ C(R?) if 1<p<co. [

Remark 17. In view of part (ii) of Corollary 5 it becomes clear that 4 ,1,/ ?(R?) contains

unbounded functions and hence, is quite different from Sll,/{’ B(R?).

6. Approximation by partial sums with respect to hyperbolic crosses

The aim of this subsection consists in a detailed investigation of the norm of the
operators I — S? | considered as a mapping from S;_’qF([Rz) into L,(R?) and from
Sl';qu([Riz) into L,(R?). Because of Corollary 1 this is of interest only if ¢>2 in the
case of the F-spaces and ¢>min(p,2) in case of the B-spaces. Otherwise the above
spaces are embedded into A4, (R?) and it follows that

1 = Spf 1L (RO <e(£)27.

Step 2 in the proof of Theorem 10 and steps 3 and 4 in the proof of Theorem 11 show
that even

=Sy S, F(R) = Ly(R*)[|~27"" (if ¢>2),
lf = Sif: S, B(R*) > L,(R?)||~27"  (if ¢>min(p,2)).

All these estimates of || — S| will be used in a forthcoming paper [22] of the
second named author to evaluate the quality of a family of sampling operators
related to sparse grids.

Theorem 10. Suppose 1 <p<oo,2<g< o0, and r>0. Then

11
|1 —SH . S;_qF(Rz)HLp([R{2)||~m2 g7, (44)

Proof.
Step 1: Let 1/g+ 1/v=1/2. (16) and Holder’s inequality yield

1S = SafILp(R?)]]

1/2
<(1/4,) ( > |E.,k|2> Ly(R?)

Jj+k>m
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1/2
<(1/4,)27~ ( Z 2(r(j+k)+nn')22r(j+k>2|]§1k|2> LP(Rz)

Jjtk>m

1/v
< (I/Ap)z—)nr( Z 2(—r(j+k)+mr)v> HflS;qF(Rz)H

JjH+k>m

Now, the assertion on the upper bound follows.
Step 2: To prove the lower bound we test the operator on functions of type (32).
Employing the same notations as in the proof of Theorem 4 (Step 6) this yields

) . 5 1/2
(S 2010720, )

|27 (1 — ST 1 ST F(RY)i> Ly (R?)]|>c 7 ’
1B k7 4ll

m p.q

for some positive ¢. We choose
g = I, 0<j<m and k=m+1-—j,
770 otherwise.

, A 12
Then [[f4l/4ll = (m+ D' and (54,2021, ) U= m )2 O

Theorem 11. Let r>0.
(1) Suppose 1 <p<2 and p<q<oo. Then

11
11— St S B(R?) > Ly(R?)|| ~mp 427" (45)

(i1) Suppose 2<p< oo and g>2. Then

11
=S 2] BR?) = Ly (R?) || ~m? 027 (46)
Proof.
Step 1: We prove the estimate from above in (45). Observe
Z ZﬁJ( L,,(Rz) <2 Z Z 271‘(]+k)+mr2r(]+k)||ﬁ7k|Lp(R2)||
j=m+1 k=0 j=m+1 k=0
< 27| £18}, . BR)]I.
Analogously
0 0
DD kLR <27 £1S; . BR)]|.
k=m+1 j=0

Hence, the major part of the operator norm comes from the sum >, 37" ..

Here by means of the Littlewood—Paley assertion (16), of the elementary inequality
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(12) and Holder’s inequality with 1/u+ 1/q = 1/p we find

> ﬁ,kL(RZ)H
=0 k=m—j+1

3

m

1/2
l/A ( Z f,mj+/|2> Lp(R2>

=0 /=1

m m 1/17
<(1/4,) Z( 1 S ,+/|L,)<R2>||”>

/=1 \ j=0
m m L/u m _ 1/q
</a) 33( Sz ) Sor e
7=0

<c2"m"|| f1S} ,B(R?)|l.

Step 2: We prove the estimate from above in (46). As in Step 1 the major part of
the operator norm comes from the sum 7", >%" ... Using (12) and putting
1/2 =1/q+ 1/u we can derive, quite similar to Step 1,

m 1/2
<(1/4,) Z( Z | s 1 Lp(R)]] )

/=1

m 1/u m 1/q
l/A Z( Z - r(m+4)u > < Z 2r(m+/)q||ﬁmj+/|Lp(R2)||q>
(=

=0

fiic| Lp(R?)

<c2™"m"|| f1S, ,B(R)|].

Step 3: Estimate from below in (46). Since ||f|SI’;7qF([R2)|\ = ||f|S1’,7qB([R§2)|| for
functions of type (32) the argument from Step 2 of the proof of Theorem 10 applies.

Step 4: Estimate from below in (45). We shall test the operator 7 — S¥ with the
functions f,, defined in (27). Then

| fons1 = Sytfon1 | Lp (R = [ fonst | Lp(RZ) | ~ P27

Recall, || fm|S1’,’qB(R2)|| has been calculated in Lemma 3. In view of the independence
of the constants on m the result follows. [

Remark 18. For ¢ = oo the assertion of the Theorem 10 is known, cf. [17]. In the
periodic setting it was known even for a longer time, cf. [6] (p = 2), [18], [26
Theorem II1.3.3]. The analogous problem for spaces defined on the unit cube and
spline approximation has been treated by Kamont [15].
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Remark 19. Let us mention that in the periodic context Delvos and Schempp [8]
gave estimates of the best approximation in the L,-norm by using Korobov spaces
(defined by the behavior of the Fourier coefficients).
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