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1. Introduction

The aim of the paper is to study the relations between classes of functions defined
by rates of best approximation with respect to hyperbolic crosses and smoothness
spaces either defined by Fourier analytical tools or defined by differences with a
dominating mixed term. In a sense this article is a continuation of the paper by
Lizorkin and Nikol’skij [17] taking into account new developments such as the
interpolation characterization (of the approximation classes) and more refined
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spaces such as the two scales of spaces Sr
p;qBðR2Þ and Sr

p;qFðR2Þ of Besov–Lizorkin–
Triebel type with dominating mixed smoothness. On the other hand, it serves as an
orientation towards approximation by sampling from sparse grids which will be the
subject of a forthcoming paper by the second named author.
Here we call the set

Hm ¼ fðx1; x2Þ : (rAf0;y;mg s:t: jx1jp2rp and jx2jp2m�rpg ð1Þ

the hyperbolic cross of order m; mAN0: According to these sets we define the

hyperbolic best approximation of order m in LpðR2Þ as
Emð f ;LpÞ :¼ inf jj f � gjLpðR2Þjj; ð2Þ

where the infimum is taken with respect to all functions gALpðR2Þ such that the

support of its Fourier transform Fg is contained in Hm: This notion imitates those
known from hyperbolic cross approximation of periodic functions or those from
hyperbolic wavelet approximation, cf. [2,3,9,15,17,18,25,26]. For r40 and

1pp; qpN the approximation space Ar
p;qðR2Þ is defined as the collection of all

fALpðR2Þ such that

jjj f jjj ¼
XN
m¼0

2mrqEmð f ;LpÞq

 !1=q

oN: ð3Þ

These classes have been introduced and investigated in [17]. However, in the
literature the interest has been concentrated on the periodic case. A good source for
those investigations and also concerning references is the book by Temlyakov [26].
We want to mention in this connection the paper of Burenkov and Gol’dman [7]

where these authors developed a technique to transfer results from Rd to its periodic
analog and vice versa under certain rather weak conditions. This could be used to get
some of the following statements also in the periodic situation.
There are different ways to characterize approximation spaces. Usually, one tries

to construct an appropriate modulus of smoothness. This has been done by DeVore
et al. [11] in the situation considered here. Alternatively, following a general scheme
due to DeVore and Popov [10], the approximation spaces defined in (3) can be
characterized also as real interpolation spaces of couples of (fractional) Sobolev
spaces with a dominating mixed derivative. This is more or less a folklore-type result
but it paved the way to an application of interpolation arguments in the main part of
our paper, cf. Section 5.
Our main interest is twofold. On the one hand, we are looking for optimal

embeddings which relate the approximation spaces associated with (3) to the scales

Sr
p;qBðR2Þ and Sr

p;qFðR2Þ: Here we can improve earlier results of Lizorkin and

Nikol’skij [17]. On the other hand, we deal with the approximation of functions with

dominating mixed smoothness by partial sums SH
m f with respect to hyperbolic

crosses. We are able to give a complete description of the asymptotic behavior of the
rate of convergence to f in the Lp-norm if the function f belongs to one of these

spaces Sr
p;qBðR2Þ or Sr

p;qFðR2Þ: Here we extend results by Bugrov [7], Nikol’skaya
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[18], Lizorkin and Nikol’skij [17], and Temlyakov [25,26]. In both cases it turns out
that there is a rather sophisticated interplay with the microscopic parameter q:

Surprisingly, the largest subspace within the above scales contained in Ar
p;NðR2Þ is

always a space of Lizorkin–Triebel type.
This paper concentrates on the bivariate situation. Here our intention was to

reduce the technicalities and to increase the transparency of the arguments.
Moreover, we have the convenient reference [21] at hand (which concentrates on
d ¼ 2; too). Let us emphasize that the methods will apply also to the general
situation but we have not checked all details.
The paper is organized as follows. In Section 2 we recall the definition, properties

and some equivalent characterizations of Besov–Lizorkin–Triebel classes of
dominating mixed smoothness. In particular, we are concerned with embeddings.
Section 3 is devoted to the description of approximation spaces with respect to the
hyperbolic cross and its characterization as interpolation spaces. Next, in Section 4,
we collect some results on the interpolation of spaces of dominating mixed
smoothness which will turn out to be useful later on. The heart of the paper consists
in a detailed comparison of these three scales given in Section 5. Finally, we

investigate jj f � SH
m f jLpðR2Þjj for functions f belonging to either Sr

p;qBðR2Þ or

Sr
p;qFðR2Þ whenever they are not contained in Ar

p;NðR2Þ:

2. Besov–Lizorkin–Triebel classes of dominating mixed smoothness

2.1. Definition and some basic properties

Here we follow [21, Chapter 2] and introduce the scales of Besov–Nikol’skij and
Lizorkin–Triebel spaces of dominating mixed smoothness via the Fourier analytic
approach.
Let Rn be the Euclidean n-space, by N we denote the natural numbers, N0 stands

for N,f0g and by Z the integers. We write aBb if there exists a constant c40
(independent of the context dependent relevant parameters) such that

c�1apbpca:

As usual, SðRnÞ and S0ðRnÞ denote the Schwartz space of infinitely differentiable
and rapidly decreasing functions and its dual, the space of tempered distributions,

respectively. F denotes the Fourier transform and F�1 its inverse, both extended to
S0: If necessary we indicate the dimension of the underlying Euclidean space likeF1

denoting the Fourier transform on R in that way.
We shall use smooth dyadic decompositions of unity. Let j0 be an infinitely

differentiable function such that 0pj0ðtÞp1; j0ðtÞ ¼ 1 if jtjp1; and j0ðtÞ ¼ 0 if
jtj43=2: Then we put

jðtÞ ¼ j0ðt=2Þ � j0ðtÞ; jjðtÞ ¼ jð2�jþ1tÞ; j ¼ 1; 2; 3;y : ð4Þ
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ObviouslyXN
j¼0

jjðtÞ ¼ 1; tAR

and

f ðtÞ ¼
XN
j¼0

F�1½jjðxÞFf ðxÞ�ðtÞ

if fAS0ðRÞ (convergence in S0ðRÞ). Similarly,XN
j¼0

XN
k¼0

jjðx1Þjkðx2Þ ¼ 1; ðx1; x2ÞAR2

and

f ðx1; x2Þ ¼
XN
j¼0

XN
k¼0

F�1½jjðx1Þjkðx2ÞFf ðx1; x2Þ�ðx1; x2Þ

if fAS0ðR2Þ (convergence in S0ðR2Þ). For later use observe
jjðtÞ ¼ 1 if 32 j�2pjtjp2 j; jX1: ð5Þ

We shall use the abbreviations

fj ¼ F�1½jjFf � and fj;k ¼ F�1½jjðx1Þjkðx2ÞFf ðx1; x2Þ�: ð6Þ

First, we recall the definition of the Besov and Lizorkin–Triebel classes from the
Fourier-analytical point of view in the one-dimensional isotropic setting.

Definition 1. Let �NoroN and 1pqpN:

(i) If 1pppN; then we put

Br
p;qðRÞ ¼ fAS0ðRÞ : jj f jBr

p;qðRÞjj ¼
XN
j¼0

2 jrqjj fjjLpðRÞjjq
 !1=q

oN

8<:
9=;

if qoN and

Br
p;NðRÞ ¼ fAS0ðRÞ : jj f jBr

p;NðRÞjj ¼ sup
j¼0;1;y

2 jrjj fjjLpðRÞjjoN

( )
:

(ii) If 1ppoN; then we put

Fr
p;qðRÞ ¼ fAS0ðRÞ : jj f jFr

p;qðRÞjj ¼
XN
j¼0

2 jrqj fjjq
 !1=q

������LpðRÞ

������
������

������
������oN

8<:
9=;;
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if qoN and

F r
p;NðRÞ ¼ fAS0ðRÞ : jj f jFr

p;NðRÞjj ¼ sup
j¼0;1;2;y

2 jrj fjj jLpðRÞ
�����

�����
�����

�����oN

( )
:

Remark 1. We refer to the monographs of Peetre [20] and Triebel [27–29] for further
information.

The classes of interest in this paper are the following.

Definition 2. Let �NoroN and 1pqpN:

(i) If 1pppN; then we put

Sr
p;qBðR2Þ ¼

8<:fAS0ðR2Þ : jj f jSr
p;qBðR2Þjj:

¼
XN
j¼0

XN
k¼0

2ð jþkÞrqjj fj;kjLpðR2Þjjq
 !1=q

oN

9=;
(usual modification if q ¼ N).

(ii) If 1ppoN; then we put

Sr
p;qFðR2Þ ¼

8<:fAS0ðR2Þ : jj f jSr
p;qFðR2Þjj:

¼
XN
j¼0

XN
k¼0

2ð jþkÞrqj fj;kjq
 !1=q

������LpðR2Þ

������
������

������
������oN

9=;
(usual modification if q ¼ N).

Remark 2. The spaces Sr
p;2FðR2Þ are of peculiar interest. For rAN and 1opoN an

equivalent characterization is given by fASr
p;2FðR2Þ if and only if

f ;Dðr;0Þf ;Dð0;rÞf ;Dðr;rÞfALpðR2Þ:

If r ¼ 0; then fAS0
p;2FðR2Þ if and only if fALpðR2Þ; cf. e.g. [21, Theorem 2.3.1].

Hence, Sr
p;2FðR2Þ are Sobolev spaces with a dominating mixed derivative (in the

sense of equivalent norms). If rAR and 1opoN; then

jjF�1ð1þ jx1j2Þr=2ð1þ jx2j2Þr=2Ff jLpðR2Þjj

represents an equivalent norm on Sr
p;2FðR2Þ: All spaces admit characterizations in

terms of mixed derivatives and mixed differences if r40; cf. [21, 2.3.3, 2.3.4].
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Remark 3. Both, Sr
p;qBðR2Þ and Sr

p;qFðR2Þ are Banach spaces. The norms are so-

called cross norms. This means

jj f ðx1Þgðx2ÞjSr
p;qBðR2Þjj ¼ jj f jBr

p;qðRÞjj jjgjBr
p;qðRÞjj ð7Þ

and

jj f ðx1Þgðx2ÞjSr
p;qFðR2Þjj ¼ jj f jF r

p;qðRÞjj jjgjFr
p;qðRÞjj; ð8Þ

respectively. These relations are sometimes helpful for a better understanding.

Remark 4. As for the history of these spaces we refer also to Amanov [1], Nikol’skij
[19], Lizorkin and Nikol’skij [17] and the survey Besov et al. [5].

Let us recall that some of these classes admit a so-called Lizorkin representation.

In this situation the means F�1½jjðx1Þjkðx2ÞFf ðx1; x2Þ�ð
Þ are replaced by

F�1½ pj;kðx1; x2ÞFf ðx1; x2Þ�ð
Þ; where the functions pj;k are defined as follows: let

Pj;k ¼ fðx1; x2Þ : 2 j�1pojx1jp2 jp; 2k�1pojx2jp2kpg; j; kAN;

Pj;0 ¼ fðx1; x2Þ : 2 j�1pojx1jp2 jp; jx2jppg; jAN;

P0;k ¼ fðx1; x2Þ : jx1jpp; 2k�1pojx2jp2kpg; kAN;

P0;0 ¼ ½�p; p� � ½�p; p�: ð9Þ

The corresponding characteristic functions are denoted by pj;k: Obviously, the Pj;k

generate a pairwise disjoint covering of R2 and

Hm ¼
[

jþkpm

Pj;k: ð10Þ

Henceforth we shall use the abbreviation

effj;kðxÞ ¼ F�1½ pj;kðxÞFf ðxÞ�ðxÞ: ð11Þ

Proposition 1. Let �NoroN and 1opoN:

(i) If 1pqpN; then

Sr
p;qBðR2Þ ¼

8<:fAS0ðR2Þ : jj f jSr
p;qBðR2Þjj:

¼
XN
j¼0

XN
k¼0

2ð jþkÞrq jj effj;kjLpðR2Þjjq
 !1=q

oN

9=;
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in the sense of equivalent norms.

(ii) If 1oqoN; then

Sr
p;qFðR2Þ ¼

8<:fAS0ðR2Þ : jj f jSr
p;qFðR2Þjj:

¼
XN
j¼0

XN
k¼0

2ð jþkÞrqj effj;kjq
 !1=q
������

������LpðR2Þ

������
������
������oN

9=;
in the sense of equivalent norms.

Later on we shall make use of duality arguments. To have a concise formulation

we introduce the closure of SðR2Þ in these scales. Let sr
p;q f ðR2Þ be the closure of

SðR2Þ in Sr
p;qFðR2Þ and let sr

p;qbðR2Þ be the closure of SðR2Þ in Sr
p;qBðR2Þ;

respectively. Of course, these new spaces are equipped with the induced norms. If

maxðp; qÞoN; then sr
p;qf ðR2Þ ¼ Sr

p;qFðR2Þ and sr
p;qbðR2Þ ¼ Sr

p;qBðR2Þ holds, cf. [21,
Theorem 2.2.4]. Without additional difficulties one can carry over the proofs of some
duality assertions given in [28, 2.11] from isotropic Besov and Lizorkin–Triebel to
the case considered here.

Proposition 2. Suppose 1pppN; 1pqpN; and rAR:

(i) In the sense of the duality pairing between SðR2Þ and S0ðR2Þ we can identify the

dual space of sr
p;qbðR2Þ with S�r

p0;q0BðR2Þ:
(ii) Suppose 1opoN: In the sense of the duality pairing between SðR2Þ and S0ðR2Þ

we can identify the dual space of sr
p;q f ðR2Þ with S�r

p0;q0FðR2Þ:

2.2. Horizontal embeddings

Here we are going to compare Sr
p0;q0

BðR2Þ and Sr
p1;q1

FðR2Þ: In a ðr; 1=pÞ-plane
this corresponds to horizontal straight lines. Sobolev type embeddings
would correspond to straightlines with slope 1 (in dimension one). For that reason
we shall call them diagonal embeddings. They will be investigated in the next
subsection.

Since the spaces are defined on the whole of R2 it is clear that these classes are
incomparable for p0ap1: For that reason we consider p0 ¼ p1 only. Clearly, we have
the monotonicity of these scales with respect to the microscopic parameter q: This
will be used without further reference.

Theorem 1. Let 1ppoN; 1pq; upN; and rAR:

(i) Sr
p;uBðR2Þ+Sr

p;qFðR2Þ holds if and only if upminðp; qÞ:
(ii) Sr

p;qFðR2Þ+Sr
p;uBðR2Þ holds if and only if uXmaxðp; qÞ:
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Proof. Sufficiency follows from the elementary inequalities

jj 
 jcmaxðp;qÞðLpÞjjpjj 
 jLpðcqÞjjpjj 
 jcminðp;qÞðLpÞjj: ð12Þ

Necessity of the given conditions can be reduced to the necessity of these conditions
in the framework of the isotropic Besov and Lizorkin–Triebel spaces, see Remark 3
and [23]. &

2.3. Diagonal embeddings

Now we consider embeddings along lines with r � 1=p ¼ const:

Theorem 2. Let 1pp0op1pN; 1pq0; q1pN; and r0; r1AR: Suppose

r0 �
1

p0
¼ r1 �

1

p1
:

(i) Sr0
p0;q0

BðR2Þ+Sr1
p1;q1

BðR2Þ holds if and only if q0pq1:

(ii) Let p1oN: Then Sr0
p0;q0

FðR2Þ+Sr1
p1;q1

FðR2Þ holds for any pair q0; q1:

Proof. A proof of the sufficiency can be found in [21, 2.4.1]. The necessity in (i)
becomes again a consequence of the sharpness of the corresponding assertion for
Besov spaces Br

p;qðRÞ; see [23], and Remark 3. &

It remains to consider the mixed problem.

Theorem 3. Let 1pp0op1pN; 1pq0; q1pN; and r0; r1AR: Suppose

r0 �
1

p0
¼ r1 �

1

p1
:

(i) Let p1oN: Then Sr0
p0;q0

BðR2Þ+Sr1
p1;q1

FðR2Þ holds if and only if q0pp1:

(ii) Suppose 1op0oN: Then Sr0
p0;q0

FðR2Þ+Sr1
p1;q1

BðR2Þ holds if and only if p0pq1:

Proof. Necessity of these conditions are obtained from the corresponding assertions
for Besov and Lizorkin–Triebel spaces, see [23], and Remark 3. Sufficiency in part (i)
can be proved by employing Lemma 1 below. The proof of (ii) follows by a duality
argument, cf. Proposition 2. &

Remark 5. As a consequence of the theorem it follows that under the above
assumptions the embeddings

Sr0
p0;p1

BðR2Þ+Sr1
p1;1

FðR2Þ
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and

Sr0
p0;N

FðR2Þ+Sr1
p1;p0

BðR2Þ

hold. These cannot be improved with respect to the microscopic parameters. In the
isotropic context these embeddings have been proved by Jawerth [14] and Franke
[13]. Both authors used real interpolation in a way which does not work here, cf.
Section 4.1.

Here we formulate the nonperiodic counterpart of a result by Temlyakov [26,
Lemma 2.2.1].

Lemma 1. Let 1pp0op1pN: Suppose f j;kALp0ðR2Þ and

suppFf j;kCfðx1; x2Þ: jx1jp2 j; jx2jp2kg; j; kAN0:

Then there exists a constant c such that

XN
j¼0

XN
k¼0

j f j;kðxÞj
�����Lp1ðR2Þ

�����
�����

�����
�����

pc
XN
j¼0

XN
k¼0

2
ð jþkÞð 1

p0
� 1

p1
Þjj f j;kjLp0ðR2Þjj

� �p1
 !1=p1

ð13Þ

holds for all such sequences f f j;kgj;k:

Proof. Temlyakov works on the n-torus but this does not influence the argument.
Only one additional remark has to be made. Temlyakov formulated a weaker result
than he has proved. He stated (13) with

XN
j¼0

XN
k¼0

f j;kðxÞ instead of
XN
j¼0

XN
k¼0

j f j;kðxÞj

on the left-hand side. However, his arguments apply also in the form given here, cf.
in this connection [26, the formula at the bottom on p. 146]. &

Remark 6. Here we meet one of the situations where one could use the machinery of
Burenkov and Gol’dman [7] to carry over a known estimate in the periodic case to its
nonperiodic analog. However, the arguments used in the periodic situations have
obvious nonperiodic counterparts.
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3. Approximation with respect to the hyperbolic cross

3.1. Approximation by partial sums

Here we follow Lizorkin and Nikol’skij [17], but see also Temlyakov [25,26],
DeVore et al. [9] and Kamont [15].
A basic role will be played by

SH
m f ðxÞ ¼ F�1½XmðxÞFf ðxÞ�ðxÞ; mAN0; fALpðR2Þ; ð14Þ

where

XmðxÞ ¼
1; xAHm;

0; otherwise:

�
ð15Þ

In the language of Delvos and Schempp [8] the means SH
m f are the nonperiodic

counterparts of the pseudo-hyperbolic dyadic Fourier approximation. Observe

SH
m f ¼

X
jþkpm

effj;k;

cf. (11). Important for us will be the following version of the Littlewood–Paley
theorem: if 1opoN; then there exist positive constants Ap and Bp such that

Apjj f jLpðR2Þjjp
XN
j¼0

XN
k¼0

j effj;kðxÞj2
 !1=2

������LpðR2Þ

������
������

������
������pBpjj f jLpðR2Þjj ð16Þ

cf. [16,19] and the comments in [17].
Next, we recall a characterization of the approximation classes, defined in (3),

which was given in [17, Theorem 4.3]. We define a norm on Ar
p;q by

jj f jAr
p;qðR2Þjj ¼ jj f jLpðR2Þjj þ jjj f jjj; ð17Þ

cf. (3). With this norm Ar
p;qðR2Þ becomes a Banach space. However, often it is more

convenient to work with jjj 
 jjj instead of the norm itself. If necessary, then we shall

also write jjj 
 jAr
p;qðR2Þjjj:

Proposition 3. Let 1opoN; 1pqpN and r40: Then Ar
p;qðR2Þ is the collection of all

functions fALpðR2Þ such that

jj f jj# ¼
XN
m¼0

2mrqjjSH
mþ1 f � SH

m f jLpðR2Þjjq
 !1=q

oN: ð18Þ

Moreover, there are constants A and B such that

Ajjj f jjjpjj f jj#pBjjj f jjj ð19Þ

holds for all fALpðR2Þ:
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Remark 7. In fact, Lizorkin and Nikol’skij [17] proved a much more general
assertion since they introduced more general approximation spaces (replacing the

sequence of weights f2mrgNm¼0 by more general sequences).

Remark 8. Let us consider a specific class of functions in Ar
p;qðR2Þ: Suppose

f ðx1; x2Þ ¼ gðx1Þhðx2Þ and suppFhC½�1; 1�: Then effj;k ¼ 0 if k40 and there exist

positive constants c1 and c2 such that for all such functions f

c1jjgjBr
p;qðRÞjj jjhjLpðRÞjjpjjgðx1Þhðx2ÞjAr

p;qðR2Þjjpc2jjgjBr
p;qðRÞjj jjhjLpðRÞjj

ð20Þ

holds for r40: This indicates that Ar
p;qðR2Þ will share several features with Besov

spaces.

For �NoRoN we put

JR f ¼ F�1½ð1þ jx1j2ÞR=2ð1þ jx2j2ÞR=2Ff ðx1; x2Þ�; fAS0ðR2Þ:

Proposition 4 (Lift property). Let 0oroN; 1opoN; 1pqpN: If r þ R40; then

J�R is a linear and bounded one-to-one mapping from Ar
p;qðR2Þ onto ArþR

p;q ðR2Þ:

Proof. We have the equivalence ðqoNÞ

jjJ�R f jArþR
p;q ðR2ÞjjB

XN
m¼0

2rmq
X

jþk¼m

F�1½ pj;kF2Rð jþkÞJ�R f �
�����LpðR2Þ

�����
�����

�����
�����
q !1=q

;

ð21Þ

cf. Proposition 3. Let jj; j ¼ 0; 1;y be the system defined in (4) and put

ejjj ¼ jj�1 þ jj þ jjþ1; ðj�1 ¼ 0Þ:

It follows by (16) and the properties of the jj that

X
jþk¼m

F�1½ pj;kF2Rð jþkÞJ�R f �
 �����LpðR2Þ

�����
�����

�����
q�����
!1=q

pðApÞ�1
X

jþk¼m

jF�1½2Rjð1þ jx1j2Þ�R=22Rkð1þ jx2j2Þ�R=2
pj;kFf �ðxÞj2

 !1=2
������
������ jLpðR2Þ

����:
Using the identity

F�1½2Rjð1þ jx1j2Þ�R=22Rkð1þ jx2j2Þ�R=2
pj;kFf �ðxÞ

¼ F�1½2Rjð1þ jx1j2Þ�R=2ejjjðx1Þ2Rkð1þ jx2j2Þ�R=2ejjkðx2ÞFeffj;kðx1; x2Þ�ðxÞ
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the right-hand side can be estimated by

c
X

jþk¼m

j effj;kj2
 !1=2

������LpðR2Þ

������
������

������
������

using the vector-valued multiplier theorem (Theorem 1.10.3(ii)) in [21]. Inserting this
into (21) we obtain

jjJ�Rf jArþR
p;q ðR2Þjjpcjj f jAr

p;qðR2Þjj

using again (16). The same arguments give

jjJRf jAr
p;qðR2Þjjpcjj f jArþR

p;q ðR2Þjj

and the proof is complete. &

3.2. Real interpolation of approximation spaces

Next, we shall make use of the interpolation theory of abstract approximation
spaces, which is due to DeVore and Popov, cf. e.g. [10].
For basics of real interpolation we refer to Bergh and Löfström [4] and Triebel

[27].

Proposition 5. Let 1opoN; 1pqpN; and r0; r1X0 such that r0ar1: Let 0oYo1:
We put r ¼ ð1�YÞr0 þYr1: Then

ðSr0
p;2FðR2Þ;Sr1

p;2FðR2ÞÞY;q ¼ Ar
p;qðR2Þ:

Proof. By the lift property of the spaces Ar
p;qðR2Þ and Sr

p;2FðR2Þ it is sufficient to
consider the case r0 ¼ 0 and r1 ¼ r: We define X0 ¼ f0g and

Xm ¼ f fALp: suppFfCHmg; m ¼ 1; 2;y :

It is easily checked that this scale satisfies the assumptions in [10, Chapter 7, Section
5]. Based on the Lizorkin representation, cf. Proposition 1, and using the
Littlewood–Paley assertion (16) we derive immediately a Jackson type inequality

jj f � SH
m f jLpðR2Þjjp ð1=ApÞ

X
jþk4m

j effj;kj2
 !1=2

������LpðR2Þ

������
������

������
������

p c2�mrjj f jSr
p;2FðR2Þjj

valid for all fASr
p;2FðR2Þ; r40: Furthermore, by similar arguments the Bernstein

type inequality

jj f jSr
p;2FðR2Þjjpc2mrjj f jLpðR2Þjj
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is valid for all fAXm: This is sufficient to apply the scheme of approximation spaces

with X ¼ LpðR2Þ and Y ¼ Sr
p;2FðR2Þ; cf. [10, Chapter 7, Section 9]. &

Remark 9. The counterparts in case of hyperbolic spline approximation on the cube
and hyperbolic wavelet approximation on Rn have been proved in [9,10].

As a direct consequence of the preceding proposition one obtains the following
result on interpolation of approximation spaces, cf. [10, Theorem 7.9.1, formula
7.9.7].

Proposition 6. Let 1opoN; 1pq; q1pN; and 0or1: Let 0oYo1:

(i) We put r ¼ Yr1: Then

ðLpðR2Þ;Ar1
p;q1

ðR2ÞÞY;q ¼ Ar
p;qðR2Þ:

(ii) Let 1pq0pN and 0or0or1: We put r ¼ ð1�YÞr0 þYr1: Then

ðAr0
p;q0

ðR2Þ;Ar1
p;q1

ðR2ÞÞY;q ¼ Ar
p;qðR2Þ:

4. Complex and real interpolation of spaces with dominating mixed smoothness

Here we mention a few results about interpolation which will be useful in proving
mixed diagonal embeddings.

4.1. Real interpolation

Proposition 7. Let 1pppN; 1pq0; q1pN; and r0; r1AR: Let 0oYo1: We put

r ¼ ð1�YÞr0 þYr1 and
1

q
¼ ð1�YÞ 1

q0
þY

1

q1
:

Then

ðSr0
p;q0

BðR2Þ;Sr1
p;q1

BðR2ÞÞY;q ¼ Sr
p;qBðR2Þ:

Proof. As in [27, 1.2.4,2.4.1,2.4.2] or [4, 6.4] the proof is reduced to the
interpolation of certain vector-valued sequence spaces by means of retraction and
coretraction.
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Let fjjgj be the system of functions defined in (4). We put

R0ðxÞ :¼ j0ðxÞ þ j1ðxÞ

RkðxÞ :¼ jk�1ðxÞ þ jkðxÞ þ jkþ1ðxÞ; k ¼ 1; 2;y;

Rj;kðx1; x2Þ ¼ Rjðx1ÞRkðx2Þ; j; k ¼ 0; 1;y;

jj;kðx1; x2Þ ¼ jjðx1Þjkðx2Þ; j; k ¼ 0; 1;y :

If fAS0ðR2Þ we define

Sf ðxÞ :¼ F�1½jj;kFf �ðxÞ
n o

N

j;k¼0
:

For gj;kAS0ðR2Þ; j; k ¼ 0; 1;y we define (formally)

Rfgj;kgj;k :¼
XN
j¼0

XN
k¼0

F�1½Rj;kFgj;k�ðxÞ

if the double series on the right-hand side converges in S0ðR2Þ: Obviously, we then
have

RðSf Þ ¼ f :

We introduce the sequence spaces

cr
qðN0;XÞ ¼ fxjgNj¼0CX : jjfxjgj jcr

qðN0;XÞjj ¼
XN
j¼0

2rjqjjxjjX jjq
 !1=q

oN

8<:
9=;

and

cr
qðN2

0;XÞ ¼ cr
qðN0; c

r
qðN0;XÞÞ;

where X is an arbitrary Banach space, rAR and 1pqpN (modification if q ¼ N).
Now, by definition of the spaces S is a linear and bounded operator

S : Sri
p;qi

BðR2Þ-cri
qi
ðN2

0;LpðR2ÞÞ ði ¼ 1; 2Þ:

On the other hand, we have the boundedness of

R : cri
qi
ðN2

0;LpðR2ÞÞ-Sri
p;qi

BðR2Þ ði ¼ 1; 2Þ:

This can be seen as follows. We observe that

jjRfgj;kgj;kjSri
p;qi

BðR2Þjj

p
X

jcj;jmjp1

XN
j¼0

XN
k¼0

2rið jþkÞqi F�1½jj;kRjþc;kþmFgjþc;kþm�
��LpðR2Þ

�� ���� ��qi

 !1=qi

;

where gj;k and Rj;k are zero if jo0 or ko0: The Lp-norm on the right-hand side can

be rewritten as the norm of a convolution and estimated by

cjjgjþc;kþmjLpðR2Þjj
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(where c does not depend on g; j; k) such that

jjRfgj;kgj;kjSri
p;qi

BðR2Þjjpcjjfgj;kgj;kjcri
qi
ðN2

0;LpðR2ÞÞjj:

Let r ¼ ð1�YÞr0 þYr1 and 1=q ¼ ð1�YÞ=q0 þY=q1 and X ¼ LpðR2Þ: Let us

recall the well-known formula ([4] or [27])

ðcr0
q0
ðN0;Y0Þ; cr1

q1
ðN0;Y1ÞÞY;q ¼ cr

qðN0; ðY0;Y1ÞY;qÞ;

where ðY0;Y1Þ is an interpolation couple of Banach spaces. Iterated use of this
formula leads to

ðcr0
q0
ðN2

0;XÞ; cr1
q1
ðN2

0;X ÞÞY;q ¼ cr
qðN2

0;X Þ;

and proves the proposition. &

If one compares this result with the corresponding formula for Besov spaces

ðBr0
p;q0

;Br1
p;q1

ÞY;q ¼ Br
p;q; r ¼ ð1�YÞr0 þYr1; r0ar1;

cf. e.g. [4, Theorem 6.4.5], then the greater flexibility of this formula with respect to
the microscopic parameters q0; q1 and q is obvious. For us it was a bit surprising that
real interpolation connecting the classes of interest here requires much more
restrictions. To support this we prove an instructive lemma. To have a concise
formulation we introduce the following abbreviation. Let Sr

p;q stand for one of the

classes Sr
p;qFðR2Þ and Sr

p;qBðR2Þ: If several spaces Sr0
p0;q0

; Sr1
p1;q1

;y occur, then they

may be taken from different scales. Let A;B be an interpolation couple of Banach
spaces and let 0oYo1: By ðA;B;YÞ we denote an interpolation space of A and B

which is generated by an interpolation functor of type Y; cf. e.g. [27, 1.2.2]. In
particular, this applies to real and complex interpolation with respect to the
parameter Y: Under these restrictions the following is true.

Lemma 2. Suppose 1op0; p1oN and r0; r1AR:

(i) The embedding

ðSr0
p0;q0

;Sr1
p1;q1

;YÞ+Sr
p;q

implies

1

q
p
1�Y

q0
þ Y

q1
:

(ii) If we replace in (i) one or two of the spaces Sr0
p0;q0

; Sr1
p1;q1

or Sr
p;q by the

corresponding approximation spaces Ar0
p0;q0

ðR2Þ; Ar1
p1;q1

ðR2Þ or Ar
p;qðR2Þ; respec-

tively, then the conclusion is

1eqqp1�Yeqq0 þ Yeqq1;
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where

eqq :¼
q; in case of no replacement;

2 otherwise:

�

Proof. We employ test functions defined as follows:

gmðx1; x2Þ :¼
Xm�3

j¼3
ajF

�1½cðx1 � c2 j; x2 � c2m�jÞ�ðxÞ; m ¼ 6; 7;y;

where cASðR2Þ and suppFcCfx : jxjp1g: The constant c ¼ 7=8 is chosen in such
a way that it simplifies the norm of gm as much as possible (cf. (5)). We have

jjgmjSr
p;qFðR2Þjj ¼ jjgmjSr

p;qBðR2Þjj ¼ jjF�1cjLpðR2Þjj2mr
Xm�3

j¼3
jajjq

 !1=q

:

Further, there exist positive constants c1 and c2 such that

c1jjjgmjAr
p;qðR2Þjjjp2rm

Xm�3

j¼3
jaj j2

 !1=2

pc2jjjgmjAr
p;qðR2Þjjj;

cf. Lemma 4. The interpolation property and the continuous embedding
ðSr0

p0;q0
;Sr1

p1;q1
;YÞ+Sr

p;q imply the inequality

Xm�3

j¼3
jajjq

 !1=q

pc
Xm�3

j¼3
jajjq0

 !1�Y
q0 Xm�3

j¼3
jajjq1

 !Y
q1

with a constant c independent of m: This proves (i). The proof of (ii) is similar. &

There is a further interpolation formula well-known for the isotropic classes which
has a counterpart in our situation.

Proposition 8. Let 1op0op1oN; 1oqpN; and rAR: Let 0oYo1: We put 1=p ¼
ð1�YÞð1=p0Þ þYð1=p1Þ: Then

ðSr
p0;q

FðR2Þ;Sr
p1;q

FðR2ÞÞY;p ¼ Sr
p;qFðR2Þ: ð22Þ

Proof. We use the operators S and R defined in the proof of Proposition 7.
Let 1opoN and 1oqpN: It is obvious that the restriction of S is a linear

bounded operator

S : S0
p;qFðR2Þ/LpðR2; cqðN2

0ÞÞ:
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Moreover, it is clear by definition of the Rj;k that (at least formally)

RðSf Þ ¼ f for all fAS0
p;qFðR2Þ

holds. We show that R : LpðR2; cqÞ/S0
p;qFðR2Þ is bounded. By using the properties

of suppjj;k we have

jjRfgj;kgj;kjS0
p;qFðR2Þjj

p
X

jcj;jmjp1

XN
j;k¼0

jF�1½jj;kRjþc;kþmFgjþc;kþm�ðxÞjq
 !1=q

������LpðR2Þ

������
������

������
������;

where gj;k � 0 if either jo0 or ko0: Applying a well-known assertion on

convolutions, cf. [24, 2.2, p. 56/57] the right-hand side can be estimated from above
by

c
XN
j;k¼0

ðMgj;kÞqðxÞ
 !1=q

������LpðR2Þ

������
������

������
������;

where M denotes the Hardy–Littlewood maximal function. The vector-valued
maximal inequality of Fefferman and Stein [12] yields the desired boundedness if
1oqoN: If q ¼ N we use

sup
j

ðMgjÞðxÞ
�����LpðR2Þ

�����
�����

�����
�����p M sup

j
jgjj

 !
ðxÞ
�����LpðR2Þ

�����
�����

�����
�����

and the scalar Hardy–Littlewood maximal inequality. Now, the desired formula in
case r ¼ 0 follows from

ðLp0ðAÞ;Lp1ðAÞÞY;p ¼ LpðAÞ; A ¼ cqðN2
0Þ; ð23Þ

where 1
p
¼ 1�Y

p0
þ Y

p1
(cf. [27, Theorem 1.18.6/2] or [4, 5.1]). The general case ra0 is a

consequence of the lift property of the spaces under consideration, cf. [21, 2.2.6]. &

Remark 10. In addition to the proof of (22) let us note that

S : S0
p;1FðR2Þ/LpðR2; c1Þ; 1ppoN:

Moreover, (23) is true also for A ¼ c1: Hence, by interpolation

S : ðS0
p0;1

FðR2Þ;S0
p1;1

FðR2ÞÞY;p/LpðR2; c1Þ:

This leads to

jj f jS0
p;1FðR2Þjj ¼ jjSf jLpðR2; c1Þjjpcjj f jðS0

p0;1
FðR2Þ;S0

p1;1
FðR2ÞÞY;pjj:

In other words, using again the lift property of the spaces, we have the embedding

ðSr
p0;1

FðR2Þ;Sr
p1;1

FðR2ÞÞY;p+Sr
p;1FðR2Þ; 1

p
¼ ð1�YÞ 1

p0
þY

1

p1
; ð24Þ

which will be sufficient for our later purposes as a replacement of (22) if q ¼ 1:
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4.2. Complex interpolation

For completeness we also state some results on complex interpolation.

Proposition 9. (i) Let 1pp0; p1pN; 1pq0; q1pN; and r0; r1AR: Let 0oYo1: We

put r ¼ ð1�YÞr0 þYr1;

1

p
¼ ð1�YÞ 1

p0
þY

1

p1
and

1

q
¼ ð1�YÞ 1

q0
þY

1

q1
:

Then

½Sr0
p0;q0

BðR2Þ;Sr1
p1;q1

BðR2Þ�Y ¼ Sr
p;qBðR2Þ:

(ii) Let 1op0; p1oN; 1oq0; q1pN; and p; q; r0; r1; r;Y as above. Then

½Sr0
p;q0

FðR2Þ;Sr1
p;q1

FðR2Þ�Y ¼ Sr
p;qFðR2Þ:

Proof. As in proof of Proposition 7(i) is reduced to iterated use of the interpolation
formula

½cr0
q0
ðN0;X0Þ; cr1

q1
ðN0;X1Þ�Y ¼ cr

qðN0; ½X0;X1�YÞ;

whereas (ii) is reduced to

½Lp0ðR2;Y0Þ;Lp1ðR2;Y1Þ�Y ¼ LpðR2; ½Y0;Y1�YÞ;

by means of the arguments in the proof of Proposition 8. &

5. A detailed comparison of Ar
p;qðR2Þ with Sr

p;qBðR2Þ and Sr
p;qFðR2Þ

This section is the heart of the paper. Here we clarify the somewhat complicated
relations between the approximation classes on the one side and the spaces of Besov
and Lizorkin–Triebel type on the other.

5.1. Preparations—classes of test functions

We shall investigate two different types of test functions. On the one hand, we
study the nonperiodic counterpart of the Dirichlet kernel with respect to the
hyperbolic annuli Hmþ1\Hm and on the other hand the nonperiodic counterpart of
lacunary series.
Recall, pj;k denotes the characteristic function of Pj;k:

Lemma 3. Suppose 1opoN and 1pqpN:

(i) There exist positive constants c1 and c2 such that

c1m
1=p2mð1�1=pÞp

Xm

j¼0
F�1½ pj;m�j�

�����LpðR2Þ
�����

�����
�����

�����pc2m
1=p2mð1�1=pÞ ð25Þ

holds for all mAN:

ARTICLE IN PRESS
H.-J. Schmeisser, W. Sickel / Journal of Approximation Theory 128 (2004) 115–150132



(ii) There exist positive constants c1 and c2 such that

c1m
1=p2mð1�1=pÞp sup

0pjpm

jF�1½ pj;m�j�j
�����LpðR2Þ

�����
�����

�����
�����

p
Xm

j¼0
jF�1½ pj;m�j�j

�����LpðR2Þ
�����

�����
�����

�����pc2m
1=p2mð1�1=pÞ ð26Þ

holds for all mAN:
(iii) Define

fmðxÞ :¼
Xm

j¼0
2�rm2mð1=p�1ÞF�1pj;m�j; mAN: ð27Þ

Then there exist positive constants c1 and c2 such that

c1m
1=qpjj fmjSr

p;qBðR2Þjjpc2m
1=q ðrARÞ; ð28Þ

c1m
1=ppjj fmjSr

p;qFðR2Þjjpc2m
1=p ðrARÞ ð29Þ

and

c1m
1=ppjjj fmjAr

p;qðR2Þjjjpc2m
1=p ðr40Þ; ð30Þ

holds for all mAN:

Proof. Step 1: In what follows, we need the Lp-norm of the functions F�1pj;k:

Clearly, if j; kX1 a homogeneity argument gives

jjF�1pj;kjLpðRÞjj ¼ C2 jð1�1=pÞ2kð1�1=pÞ: ð31Þ

A similar equality holds for the pairs ð0; kÞ; kX1 and ð j; 0Þ; jX1: To prove the upper
estimate we employ Lemma 1. For 1pqopoN it follows

Xm

j¼0
jF�1pj;m�jj

�����LpðR2Þ
�����

�����
�����

�����p c1
Xm

j¼0
2

m
1
q
�1

p

� �
p
jjF�1pj;m�j jLqðR2Þjjp

 !1=p

p c2
Xm

j¼0
2

m
1
q
�1

p

� �
p
2

m 1�1
q

� �
p

 !1=p

p c3m
1=p2

m 1�1
p

� �
:

The estimate from below in the Lp-norm turns out to be a consequence of the

estimate from above in case p0; of the exactness of the L2-result, an orthogonality
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argument and Hölder’s inequality:

ðm þ 1Þ2mp2 ¼
Xm

j¼0
F�1½ pj;m�j�

�����L2ðR2Þ
�����

�����
�����

�����
2

¼
Z Xm

j¼0
jF�1½ pj;m�j �ðxÞj2 dx

p
Z

sup
0pjpm

jF�1½ pj;m�j�ðxÞj
Xm

j¼0
jF�1½ pj;m�j�ðxÞj dx

p sup
0pjpm

jF�1½ pj;m�j�jjLpðR2Þ
�����

�����
�����

����� Xm

j¼0
jF�1½ pj;m�j �jjLp0 ðR2Þ

�����
�����

�����
�����

p cm1=p02mð1�1=p0Þ sup
0pjpm

jF�1½ pj;m�j�jjLpðR2Þ
�����

�����
�����

�����:
This proves (26) and at the same time (25).

Step 2: Due to Proposition 1 and (31) we have

jj fmjSr
p;qBðR2ÞjjB

Xm

j¼0
2mð1=p�1ÞqjjF�1½ pj;m�j�jLpðRÞjjq

 !1=q

Bm1=q:

The equivalence in (30) turns out to be an immediate consequence of Proposition 3
and part (i). To verify (29) observe

jj fmjSs
p;qFðR2ÞjjB2mð1=p�1Þ

Xm

j¼0
jF�1½ pj;m�j�jq

 !1=q
������LpðRÞ

������
������

������
������Bm1=p

because of (ii). The proof is complete. &

Remark 11. The main ideas of the proof of the preceding lemma are taken from [26,
Lemma 1.1 in Chapter 3]. There two-sided estimates of the Lp-norm of the Dirichlet

kernel with respect to the hyperbolic cross are given.

Remark 12. Also in this situation one could use the technique of Burenkov and
Gol’dman [7] to carry over the estimates from the periodic situation to the
nonperiodic one. That would result in the estimate from above in (25). For that
reason we decided to give a complete proof by repeating (partially) the arguments
from the periodic case. Vice versa, referring again to [7], the contents of Lemma 3
can be carried over to its periodic analog.

Even more simple are the following nonperiodic counterparts of lacunary

series. We start with a function cASðR2Þ satisfying suppFcCfx : jxjp1g:
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Then we put

faðxÞ ¼
XN
j¼3

XN
k¼3

aj;kF
�1½cðx1 � c2 j ; x2 � c2kÞ�ðxÞ ð32Þ

for a given sequence a ¼ faj;kgj;k of complex numbers. For c ¼ 7=8 (cf. (5)) we have

F�1½jjðx1Þjkðx2ÞFfaðx1; x2Þ�ðxÞ ¼ aj;kðF�1cÞðxÞeiðc2 jx1þc2kx2Þ

if j; kX3: This implies the following.

Lemma 4. Let 1pqpN:

(i) Suppose 1pppN: We have

jj fajSr
p;qFðR2Þjj ¼ jj fajSr

p;qBðR2Þjj

¼ jjF�1cjLpðR2Þjj
XN
j¼3

XN
k¼3

2ð jþkÞsqjaj;kjq
 !1=q

:

(ii) Suppose 1opoN: Then there exist positive constants c1 and c2 such that

c1jjj fajAr
p;qðR2Þjjjp

XN
m¼3

2smq
Xm�2

j¼3
jaj;m�jþ1j2

" #q=2
0@ 1A1=q

pc2jjj fajAr
p;qðR2Þjjj:

Proof. Part (i) is obvious. To show (ii) we use Proposition 3. We have

jjSH
mþ1 fa � SH

m fajLpðR2ÞjjB
X

jþk¼mþ1
jaj;kj2

 !1=2

by the Littlewood–Paley assertion (16). From that the claim follows. &

5.2. Horizontal embeddings

We fix the smoothness parameter r and the integrability parameter p and
investigate the influence of the microscopic parameter q:

Theorem 4. Suppose 1opoN; 1pq; upN; and r40:

(i) Let qop: Then Sr
p;1FðR2ÞgAr

p;q holds.

(ii) Let qXp: Sr
p;uFðR2Þ+Ar

p;q holds if and only if upminð2; qÞ:
(iii) Let q4p: Then Ar

p;qgSr
p;NFðR2Þ holds.

(iv) The embedding Ar
p;q+Sr

p;uF holds if and only if qpp and uXmaxð2; qÞ:
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Proof.

Step 1: Proof of (i). Remarks 3 and 8 show that the embedding

Sr
p;1FðR2Þ+Ar

p;qðR2Þ would imply Fr
p;1ðRÞ+Br

p;qðRÞ: But this is known to be not

true under these restrictions, cf. [23].

Step 2: Proof of (iii). We argue as in Step 1. The embedding Ar
p;qðR2Þ+Sr

p;NFðR2Þ
would imply Br

p;qðRÞ+F r
p;NðRÞ: But this is known to be not true under these

restrictions, cf. [23].
Step 3: Proof of (ii). Sufficiency. We employ the elementary inequality (12) and the

Littlewood–Paley Theorem. Using qXp this leads to

2rm
Xm

j¼0

effj;m�j

�����cqðLpðR2ÞÞ
�����

�����
�����

�����
pð1=ApÞ

XN
m¼1

2rmq
Xm

j¼0
j effj;m�jj2

 !q=2
0@ 1A1=q

�������LpðR2Þ

�������
�������

�������
�������

pð1=ApÞ
XN
m¼1

Xm

j¼0
2rmuj effj;m�jju

 !1=u
������LpðR2Þ

������
������

������
������

which guarantees the continuous embedding Sr
p;uFðR2Þ+Ar

p;qðR2Þ in view of

Proposition 3.
Step 4: Proof of (ii). Necessity. We employ the family of functions from (32). With

bj;k ¼ 2ð jþkÞraj;k the embedding Sr
p;uFðR2Þ+Ar

p;q yields the validity of

XN
m¼1

X
jþk¼mþ1

jbj;kj2
 !q=2

0@ 1A1=q

pC
XN
j¼3

XN
k¼3

jbj;kju
 !1=u

for arbitrary bj;k; cf. Lemma 4. But this is true if and only if upminð2; qÞ:
Step 5: Proof of (iv). Sufficiency. Suppose qp2pp and let u ¼ 2: We have

XN
m¼1

22rm
Xm

j¼0
j effj;m�jj2

 !1=2
������LpðR2Þ

������
������

������
������

p
XN
m¼1

22rm
Xm

j¼0
j effj;m�jj2

 !1=2
������LpðR2Þ

������
������

������
������
2

0B@
1CA

1=2

pBp

XN
m¼1

22rm
Xm

j¼0

effj;m�j

�����
�����LpðR2Þ

�����
�����

 �����
2
1A1=2

;

cf. (12) and (16). The claim follows from the monotonicity of the cq-norms,

Proposition 3 and the Littlewood–Paley assertion (16). Now we consider the case
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2pqpp and u ¼ q: Then

XN
m¼1

2rmq
Xm

j¼0
j effj;m�jjq

 !1=q
������LpðR2Þ

������
������

������
������

p
XN
m¼1

2rmq
Xm

j¼0
j effj;m�jjq

 !1=q
������LpðR2Þ

������
������

������
������
q0@ 1A1=q

p
XN
m¼1

2rmq
Xm

j¼0
j effj;m�jj2

 !1=2
������LpðR2Þ

������
������

������
������
q0@ 1A1=q

pBp

XN
m¼1

2rmq
Xm

j¼0

effj;m�j

�����LpðR2Þ
�����

�����
�����

�����
q !1=q

:

Step 6: Proof of (iv). Necessity. An application of Lemma 4 shows that the

embedding Ar
p;qðR2Þ+Sr

p;uFðR2Þ implies the existence of a general constant C such

that

jjbj;kjcujjpC
XN
m¼1

Xm�2

j¼3
jbj;m�jþ1j

2

" #q=2
0@ 1A1=q

holds for all sequences fbj;kgj;k: But this implies uXmaxðq; 2Þ: The necessity of qpp

follows from part (iii). &

Theorem 5. Suppose 1opoN; 1pq; upN; and r40:

(i) The embedding Sr
p;uBðR2Þ+Ar

p;qðR2Þ holds if and only if upminð2; q; pÞ:
(ii) The embedding Ar

p;qðR2Þ+Sr
p;uBðR2Þ holds if and only if uXmaxð2; q; pÞ:

Proof.

Step 1: Proof of (i). Necessity. The necessity of upminð2; qÞ follows as in Step 6 of
the proof of Theorem 4. To prove the necessity of upp we consider the functions
introduced in (27). From (28) and (30) the desired result follows.

Step 2: Proof of (ii). Necessity. The necessity of uXp follows from (28) and (30).
Further, the necessity of uXmaxð2; qÞ can be derived by using Lemma 4.

Step 3: Proof of (i). Sufficiency. We make use of our elementary inequality (12)
and of the Littlewood–Paley assertion. With upt ¼ minð2; p; qÞ we find

XN
m¼0

2mrqjjSH
mþ1f � SH

m f jLpðR2Þjjq
 !1=q
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pc
XN
m¼0

2mrq
X

jþk¼mþ1
j effj;kj2

 !1=2
������LpðR2Þ

������
������

������
������
q0@ 1A1=q

p
XN
m¼0

2mrq
X

jþk¼mþ1
jj effj;kjLpðR2Þjjt

 !q=t
0@ 1A1=q

pjj f jSr
p;uBðR2Þjj:

Step 4: Proof of (ii). Sufficiency. Using maxð2; pÞpu we find jj 
 jcuðLpðR2ÞÞjjpjj 

jLpðR2Þðc2Þjj (see (12)). Now we apply (16)

XN
m¼0

2rmu
Xm

j¼0
jj effj;m�j jLpðR2Þjju

 !1=u

p
XN
m¼0

2rmu
Xm

j¼0
j effj;m�j j2

" #1=2������LpðR2Þ

������
������

������
������
u0@ 1A1=u

pBp

XN
m¼0

2rmu
Xm

j¼0

effj;m�jjLpðR2Þ
�����

�����
�����

�����
u !1=u

:

The final step consists in using the monotonicity of the cu-spaces and uXq: &

Of particular interest is the case q ¼ N: We formulate some simple consequences
of Theorems 4 and 5 and 3(i).

Corollary 1. Suppose 1opoN; 1pq; upN; and r40:

(i) The embedding Sr
p;uBðR2Þ+Ar

p;NðR2Þ holds if and only if upminð2; pÞ:
(ii) The embedding Sr

p;uFðR2Þ+Ar
p;NðR2Þ holds if and only if up2:

(iii) Whenever Sr
p;uBðR2Þ+Ar

p;NðR2Þ holds, then Sr
p;uBðR2Þ+Sr

p;2FðR2Þ:

Remark 13. Hence, within the scales of Besov and Lizorkin–Triebel classes the

optimal embeddings for Ar
p;NðR2Þ are:

Sr
p;2FðR2Þ+Ar

p;NðR2Þ+Sr
p;NBðR2Þ: ð33Þ

The right-hand side in this formula can be found in Lizorkin and Nikol’skij [17,
Theorem 4.1]. The ‘‘if-parts’’ of (33) have been known in different contexts, cf.
[9,15,25,26].

Quite similarly one can deal with the other extremal case Ar
p;1ðR2Þ:

Corollary 2. Suppose 1opoN; 1pq; upN; and r40:

(i) The embedding Ar
p;1ðR2Þ+Sr

p;uBðR2Þ holds if and only if uXmaxð2; pÞ:
(ii) The embedding Ar

p;1ðR2Þ+Sr
p;uFðR2Þ holds if and only if uX2:

(iii) Whenever Ar
p;1ðR2Þ+Sr

p;uBðR2Þ holds, then Ar
p;1ðR2Þ+Sr

p;2FðR2Þ+Sr
p;uBðR2Þ:

ARTICLE IN PRESS
H.-J. Schmeisser, W. Sickel / Journal of Approximation Theory 128 (2004) 115–150138



Remark 14. The only Besov space which is a subspace of Ar
p;1ðR2Þ is given by

Sr
p;1BðR2Þ; cf. Theorem 5. Hence, within the scales of Besov and Lizorkin–Triebel

classes the optimal embeddings for Ar
p;1ðR2Þ are:

Sr
p;1BðR2Þ+Ar

p;1ðR2Þ+Sr
p;2FðR2Þ:

Remark 15. Lizorkin and Nikol’skij [17] investigated the relations between Ar
p;qðR2Þ

and Sr
p;qBðR2Þ (with coincidence of the microscopic parameter q).

Based on the above investigations it is now quite easy to understand under which
conditions the approximation classes are particular spaces of Besov or Lizorkin–
Triebel type of dominating mixed smoothness.

Corollary 3. Suppose 1op0; p1oN; 1pq0; q1pN; r040 and r1; r2AR:

(i) The classes Ar0
p0;q0

ðR2Þ and Sr1
p1;q1

BðR2Þ coincide if and only if r0 ¼ r1; p0 ¼ p1 ¼ 2;

and q0 ¼ q1 ¼ 2:
(ii) The classes Ar0

p0;q0
ðR2Þ and Sr1

p1;q1
FðR2Þ coincide if and only if r0 ¼ r1; p0 ¼ p1 ¼ 2;

and q0 ¼ q1 ¼ 2:

Proof.

Step 1: Let p ¼ q ¼ 2: Then we may apply Proposition 3 and use the pairwise

orthogonality of the effj;k to obtain

jjSH
mþ1 f � SH

m f jL2ðR2Þjj2 ¼
X

jþk¼mþ1
jj effj;kjL2ðR2Þjj2:

Step 2: We assume coincidence. Then, using functions of type (32) we derive
r0 ¼ r1: Considering functions of type (27) we conclude p0 ¼ p1 whenever both
belong to ð1;NÞ: It remains to clarify the q-dependence. But here we can use
Theorems 4 and 5 to prove the claim. &

5.3. Diagonal embeddings

As in case of Besov and Lizorkin–Triebel classes we shall derive diagonal
embeddings for the approximation spaces and also mixed assertions of such a type.
Our main tool will be real interpolation.
Diagonal embeddings in the isotropic situation are well-understood, cf. e.g. [23].

Taking into account Remarks 3 and 8 this implies that the embedding

X r0
p0;q0

+Y r1
p1;q1
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(here X ;Y denote elements of either the S � B-, S � F - or A-scale) implies

p0pp1 and r0 �
1

p0
Xr1 �

1

p1
:

For p0op1 we only deal with the limiting situation r0 � 1=p0 ¼ r1 � 1=p1:

Theorem 6. (i) Let r040; rAR; and 1op0opoN; such that

r0 �
1

p0
¼ r � 1

p
:

Then it holds

Ar0
p0;p

ðR2Þ+Sr
p;qFðR2Þ ð34Þ

for all q; 1pqpN: Furthermore Ar0
p0;q0

ðR2ÞgSr
p;NFðR2Þ if q04p:

(ii) Let r; r140 and 1opop1oN; such that

r � 1

p
¼ r1 �

1

p1
:

Then it holds

Sr
p;qFðR2Þ+Ar1

p1;p
ðR2Þ ð35Þ

for all q; 1pqpN: Furthermore Sr
p;1FðR2ÞgAr1

p1;q1
ðR2Þ if q1op:

Proof.

Step 1: To prove (34) we may assume q ¼ 1: Let r0; r and 1op0op be given. We
choose p� and p�� satisfying p0op��opop�oN:Next, we chooseY; r�; and r�� such
that

1

p
¼ 1�Y

p� þ Y
p��;

r� � 1

p0
¼ r � 1

p�;

r�� � 1

p0
¼ r � 1

p��:

Then we have r0 ¼ ð1�YÞr� þYr��; see Fig. 1.
Theorem 2(ii) yields

Sr�

p0;2
FðR2Þ+Sr

p�;1FðR2Þ and Sr��

p0;2
FðR2Þ+Sr

p��;1FðR2Þ:

By real interpolation, cf. Proposition 5, it follows therefrom

Ar0
p0;p

ðR2Þ ¼ ðSr�

p0;2
FðR2Þ;Sr��

p0;2
FðR2ÞÞY;p

+ ðSr
p�;1FðR2Þ;Sr

p��;1FðR2ÞÞY;p

+
ð24Þ

Sr
p;1FðR2Þ:

This proves (34).
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Step 2: To prove (35) we may assume q ¼ N: Let r; r1 and p; p1 be given. We
choose p� and p�� satisfying 1op��opop�op1pN: Next, we choose Y; r�; and r��

such that

1

p
¼ 1�Y

p� þ Y
p��;

r � 1

p� ¼ r� � 1

p1
;

r � 1

p�� ¼ r�� � 1

p1
:

Then we have r1 ¼ ð1�YÞr� þYr��; see Fig. 2.
By real interpolation, cf. Proposition 8, and using Theorem 2 it follows therefrom

Sr
p;NFðR2Þ ¼ ðSr

p�;NFðR2Þ;Sr
p��;NFðR2ÞÞY;p

+ ðSr�

p1;2
FðR2Þ;Sr��

p1;2
FðR2ÞÞY;p

¼Ar1
p1;p

ðR2Þ:

This proves (35).
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Fig. 1. Real interpolation in Step 1 of the proof.

Fig. 2. Real interpolation in Step 2 of the proof.
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Step 3: The optimality of embeddings (34) and (35) follows from the optimality of
Br0

p0;p
ðRÞ+Fr

p;qðRÞ and of Fr
p;qðRÞ+Br1

p1;p
ðRÞ; respectively, cf. Remarks 3, 8 and

[23]. &

Next, we compare the approximation spaces along these diagonals.

Theorem 7. Let r040; rAR; and 1op0opoN; such that

r0 �
1

p0
¼ r � 1

p
:

Then it holds

Ar0
p0;q0

ðR2Þ+Ar
p;qðR2Þ ð36Þ

if and only if q0pq:

Proof.

Step 1: Sufficiency. We use Theorems 6 and 4(ii) to derive

Ari
p0;p

ðR2Þ+Sti

p;1FðR2Þ+Ati
p;pðR2Þ; p0op; ri �

1

p0
¼ ti �

1

p
; i ¼ 1; 2:

The general result follows now by real interpolation because of

Ar0
p0;q

ðR2Þ ¼ ðAr1
p0;p

ðR2Þ;Ar2
p0;p

ðR2ÞÞY;q+ðAt1
p;pðR2Þ;At2

p;pðR2ÞÞY;q ¼ Ar
p;qðR2Þ;

where r0 ¼ ð1�YÞr1 þYr2; cf. Proposition 6.
Step 2: Necessity. We use Remark 8 and the necessity of q0pq in case of the

embedding Br0
p0;q0

ðRÞ+Br
p;qðRÞ; cf. [23]. &

Remark 16. Theorem 6 shows that in Theorem 3 the spaces Sri
pi ;qi

BðR2Þ can be

replaced by Ari
pi ;qi

ðR2Þ; i ¼ 0; 1: Moreover, it follows from Theorem 7 that the

approximation spaces themselves behave like the spaces Sr
p;qBðR2Þ with respect to

embeddings with constant differential dimension (cf. Theorem 2).

A comparison of the approximation spaces with the Besov spaces is more
sophisticated.

Theorem 8. Let r040; rAR; 1pq; q0pN; and 1op0opoN; such that

r0 �
1

p0
¼ r � 1

p
:

Then it holds

Ar0
p0;q0

ðR2Þ+Sr
p;qBðR2Þ ð37Þ

if and only if maxðp0; q0Þpq:

Proof. To begin with we investigate sufficiency.

ARTICLE IN PRESS
H.-J. Schmeisser, W. Sickel / Journal of Approximation Theory 128 (2004) 115–150142



Step 1: Let q0pp0: Then Theorems 4(iv) and 3(ii) yield

Ar0
p0;p0

ðR2Þ+Sr0
p0;N

FðR2Þ+Sr
p;p0

BðR2Þ:

Hence, if qXp0 we have Ar0
p0;q0

ðR2Þ+Sr
p;qBðR2Þ:

Step 2: Let p0oq0 and q0X2: Then Theorems 5 and 2(i) yield

Ar0
p0;q0

ðR2Þ+Sr0
p0;maxð2;q0ÞBðR

2Þ+Sr
p;q0

BðR2Þ:

Hence, if qXq0 we have Ar0
p0;q0

ðR2Þ+Sr
p;qBðR2Þ:

Step 3: It remains to consider 1op0oq0o2: Now we use real interpolation. We
choose 0oYo1 such that 1=q0 ¼ ð1�YÞ=2þY=p0: Next, we choose positive
numbers r1; r2; t1 and t2 such that

r0 ¼ ð1�YÞr1 þYr2; r1ar2; r ¼ ð1�YÞt1 þYt2; t1at2

and

r1 �
1

p0
¼ t1 �

1

p
; r2 �

1

p0
¼ t2 �

1

p
:

Then

ðAr1
p0;1

ðR2Þ;Ar2
p0;1

ðR2ÞÞY;q0
¼ Ar0

p0;q0
ðR2Þ;

cf. Proposition 6. Furthermore, Proposition 7 yields

ðSt1
p;2BðR2Þ;St2

p;p0
BðR2ÞÞY;q0

¼ Sr
p;q0

BðR2Þ:

Observe

Ar1
p0;1

ðR2Þ+St1
p;p0

BðR2Þ+St1
p;2BðR2Þ and Ar2

p0;1
ðR2Þ+St2

p;p0
BðR2Þ;

see Step 1. The monotonicity of the real method yields the conclusion.
Step 4: Necessity. Our standard argument, cf. Remarks 3 and 8, yields the

necessity of q0pq: Further, our test functions from Lemma 3 prove the necessity of
p0pq: &

Theorem 9. Let r; r140 and 1opop1oN; such that

r � 1

p
¼ r1 �

1

p1
:

(i) If 1pqpp it holds

Sr
p;qBðR2Þ+Ar1

p1;q
ðR2Þ: ð38Þ

If q1oq; then Sr
p;qBðR2ÞgAr1

p1;q1
ðR2Þ:

(ii) Suppose poqoN: We have

Sr
p;qBðR2Þ+Ar1

q;qðR2Þ: ð39Þ

If pop1oq; then Sr
p;qBðR2ÞgAr1

p1;N
ðR2Þ:
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Proof.

Step 1: Proof of (i). We already know

Sr
p;1BðR2Þ+Ar

p;1ðR2Þ+Ar1
p1;1

ðR2Þ and

Sr
p;pBðR2Þ ¼ Sr

p;pFðR2Þ+Ar1
p1;p

ðR2Þ; ð40Þ

where we used Theorems 5(i), 7, and 6(ii). Now we continue with real interpolation.
For given q; 1oqop; we choose 0oYo1 such that 1=q ¼ ð1�YÞ þY=p: Next, we
choose positive numbers r2; r3; t1 and t2 such that

r ¼ ð1�YÞt1 þYt2; t1at2; r1 ¼ ð1�YÞr2 þYr3; r2ar3

and

t1 �
1

p
¼ r2 �

1

p1
; t2 �

1

p
¼ r3 �

1

p1
:

Then

ðSt1
p;1BðR2Þ;St2

p;pBðR2ÞÞY;q ¼ Sr
p;qBðR2Þ

and

ðAr2
p1;1

ðR2Þ;Ar3
p1;p

ðR2ÞÞY;q ¼ Ar1
p1;q

ðR2Þ;

cf. Propositions 7 and 6, respectively. The monotonicity of the real method and (40)
yield the conclusion.
The second statement in part (i) follows from Remarks 3 and 8.
Step 2: Proof of (ii). Sufficiency follows from

Sr
p;qBðR2Þ+Sr1

q;1FðR2Þ+Ar1
q;qðR2Þ; ð41Þ

cf. Theorems 3(i) and 4(ii). From the embedding Sr
p;qBðR2Þ+Ar1

p1;N
ðR2Þ and Lemma

3 we derive qpp1: &

5.4. Applications to approximation in different metrics

Let Xp be either Ar
p;qðR2Þ or Sr

p;qFðR2Þ or Sr
p;qBðR2Þ: We are dealing with the

question which of these classes have the property that fALp1ðR2Þ and
Emð f ;Lp1Þpcf 2

�mr1 ; m ¼ 1; 2;y; ð42Þ

where r140 is given. Of course, this holds if and only if Xp+Ar1
p1;N

ðR2Þ: In view of

the preceding subsection the answer is easy, now.

Corollary 4. Let 1opop1oN and r140: Let 1pqpN:

(i) (42) holds for all fASr
p;qFðR2Þ if and only if

rXr1 �
1

p1
� 1

p

� �
: ð43Þ
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(ii) Eq. (42) holds for all fASr
p;qBðR2Þ if and only if either

r4r1 �
1

p1
� 1

p

� �
and q is arbitrary or

r ¼ r1 �
1

p1
� 1

p

� �
:

and qpp1: Moreover, if (42) holds for all fASr
p;qBðR2Þ; then

lim
m-N

2mr1Emð f ;Lp1Þ ¼ 0

for all fASr
p;qBðR2Þ:

(iii) (42) holds for all fAAr
p;qðR2Þ if and only if (43) holds.

For better reference we state also the embeddings of Ar
p;qðR2Þ into Lp1ðR2Þ and

CðR2Þ; respectively. Here CðR2Þ denotes the space of uniformly continuous and

bounded functions on R2 equipped with the supremum norm.

Corollary 5. Let 1opop1oN and 1pqpN:

(i) The embedding Ar
p;qðR2Þ+Lp1ðR2Þ holds if and only if either

r4
1

p
� 1

p1

and q is arbitrary or

r ¼ 1

p
� 1

p1
and qpp1:

(ii) The embedding Ar
p;qðR2Þ+CðR2Þ holds if and only if r41=p:

Proof. Part (i) is a consequence of S0
p1;2

FðR2Þ ¼ Lp1ðR2Þ (equivalent norms), cf.

Remark 2 and Theorem 6. The sufficiency part in statement (ii) follows from

Ar
p;NðR2Þ+Sr

p;NBðR2Þ+S
1=p
p;1 BðR2Þ+S0

N;1BðR2Þ; r41=p;

cf. Theorems 5(ii) and 2(i). To derive the necessity we shall use once again our test
functions defined in (27): we have

fmðxÞ ¼
2

p

Xm

j¼0
2�rm2mð1=p�1Þei3pð2 j�1x1þ2m�j�1x2Þ sinð2

j�1px1Þsinð2m�j�1px2Þ
x1x2

; mAN:
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Obviously, if r ¼ 1=p; then

jj fmjLNðR2Þjj ¼ j fmð0; 0Þj ¼ 2p2�m
Xm

j¼0
2 j�1þm�j�1 ¼ p

2
ðm þ 1Þ:

Lemma 3 shows that A
1=p
p;1 ðR2ÞgCðR2Þ if 1opoN: &

Remark 17. In view of part (ii) of Corollary 5 it becomes clear that A
1=p
p;1 ðR2Þ contains

unbounded functions and hence, is quite different from S
1=p
p;1 BðR2Þ:

6. Approximation by partial sums with respect to hyperbolic crosses

The aim of this subsection consists in a detailed investigation of the norm of the

operators I � SH
m ; considered as a mapping from Sr

p;qFðR2Þ into LpðR2Þ and from

Sr
p;qBðR2Þ into LpðR2Þ: Because of Corollary 1 this is of interest only if q42 in the

case of the F -spaces and q4minðp; 2Þ in case of the B-spaces. Otherwise the above

spaces are embedded into Ar
p;NðR2Þ and it follows that

jj f � SH
m f jLpðR2Þjjpcð f Þ2�mr:

Step 2 in the proof of Theorem 10 and steps 3 and 4 in the proof of Theorem 11 show
that even

jjI � SH
m : Sr

p;qFðR2Þ/LpðR2ÞjjB2�mr ðif q42Þ;

jj f � SH
m f : Sr

p;qBðR2Þ/LpðR2ÞjjB2�mr ðif q4minðp; 2ÞÞ:

All these estimates of jjI � SH
m jj will be used in a forthcoming paper [22] of the

second named author to evaluate the quality of a family of sampling operators
related to sparse grids.

Theorem 10. Suppose 1opoN; 2oqpN; and r40: Then

jjI � SH
m : Sr

p;qFðR2Þ/LpðR2ÞjjBm
1
2
�1

q2�rm: ð44Þ

Proof.

Step 1: Let 1=q þ 1=v ¼ 1=2: (16) and Hölder’s inequality yield

jj f � SH
m f jLpðR2Þjj

pð1=ApÞ
X

jþk4m

j effj;kj2
 !1=2

������LpðR2Þ

������
������

������
������
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pð1=ApÞ2�mr
X

jþk4m

2ð�rð jþkÞþmrÞ22rð jþkÞ2j effj;kj2
 !1=2

������LpðR2Þ

������
������

������
������

pð1=ApÞ2�mr
X

jþk4m

2ð�rð jþkÞþmrÞv

 !1=v

jj f jSr
p;qFðR2Þjj:

Now, the assertion on the upper bound follows.
Step 2: To prove the lower bound we test the operator on functions of type (32).

Employing the same notations as in the proof of Theorem 4 (Step 6) this yields

jj2rðmþ1ÞðI � SH
m Þ : Sr

p;qFðR2Þ/LpðR2ÞjjXc

P
jþk4m 2rðmþ1�ð jþkÞÞ2jbj;kj

2
� �1=2

jjbj;kjcqjj
;

for some positive c: We choose

bj;k ¼
1; 0pjpm and k ¼ m þ 1� j;

0 otherwise:

�

Then jjbj;kjcqjj ¼ ðm þ 1Þ1=q and
P

jþk4m2
rðmþ1�ð jþkÞÞ2jbj;kj

2
� �1=2

¼ ðm þ 1Þ1=2: &

Theorem 11. Let r40:

(i) Suppose 1opp2 and ppqpN: Then

jjI � SH
m : Sr

p;qBðR2Þ/LpðR2ÞjjBm
1
p
�1

q2�rm: ð45Þ

(ii) Suppose 2opoN and q42: Then

jjI � SH
m : Sr

p;qBðR2Þ/LpðR2ÞjjBm
1
2
�1

q2�rm: ð46Þ

Proof.

Step 1: We prove the estimate from above in (45). ObserveXN
j¼mþ1

XN
k¼0

effj;k

�����LpðR2Þ
�����

�����
�����

�����p 2�mr
XN

j¼mþ1

XN
k¼0

2�rð jþkÞþmr2rð jþkÞjj effj;kjLpðR2Þjj

p c2�mrjj f jSr
p;NBðR2Þjj:

AnalogouslyXN
k¼mþ1

XN
j¼0

effj;k

�����LpðR2Þ
�����

�����
�����

�����pc2�mrjj f jSr
p;NBðR2Þjj:

Hence, the major part of the operator norm comes from the sum
Pm

j¼0
Pm

k¼m�jþ1:

Here by means of the Littlewood–Paley assertion (16), of the elementary inequality
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(12) and Hölder’s inequality with 1=u þ 1=q ¼ 1=p we find

Xm

j¼0

Xm

k¼m�jþ1

effj;k

�����LpðR2Þ
�����

�����
�����

�����
pð1=ApÞ

Xm

j¼0

Xm

c¼1
j effj;m�jþcj2

 !1=2
������LpðR2Þ

������
������

������
������

pð1=ApÞ
Xm

c¼1

Xm

j¼0
jj effj;m�jþcjLpðR2Þjjp

 !1=p

pð1=ApÞ
Xm

c¼1

Xm

j¼0
2�rðmþcÞu

 !1=u Xm

j¼0
2rðmþcÞqjj effj;m�jþcjLpðR2Þjjq

 !1=q

pc2�mrm1=ujj f jSr
p;qBðR2Þjj:

Step 2: We prove the estimate from above in (46). As in Step 1 the major part of

the operator norm comes from the sum
Pm

j¼0
Pm

k¼m�jþ1: Using (12) and putting

1=2 ¼ 1=q þ 1=u we can derive, quite similar to Step 1,

Xm

j¼0

Xm

k¼m�jþ1

effj;k

�����LpðR2Þ
�����

�����
�����

�����
pð1=ApÞ

Xm

c¼1

Xm

j¼0
jj effj;m�jþcjLpðR2Þjj2

 !1=2

pð1=ApÞ
Xm

c¼1

Xm

j¼0
2�rðmþcÞu

 !1=u Xm

j¼0
2rðmþcÞqjj effj;m�jþcjLpðR2Þjjq

 !1=q

pc2�mrm1=ujj f jSr
p;qBðR2Þjj:

Step 3: Estimate from below in (46). Since jj f jSr
p;qFðR2Þjj ¼ jj f jSr

p;qBðR2Þjj for
functions of type (32) the argument from Step 2 of the proof of Theorem 10 applies.

Step 4: Estimate from below in (45). We shall test the operator I � SH
m with the

functions fm defined in (27). Then

jj fmþ1 � SH
m fmþ1jLpðR2Þjj ¼ jj fmþ1jLpðR2ÞjjBm1=p2�rm:

Recall, jj fmjSr
p;qBðR2Þjj has been calculated in Lemma 3. In view of the independence

of the constants on m the result follows. &

Remark 18. For q ¼ N the assertion of the Theorem 10 is known, cf. [17]. In the
periodic setting it was known even for a longer time, cf. [6] ( p ¼ 2), [18], [26,
Theorem III.3.3]. The analogous problem for spaces defined on the unit cube and
spline approximation has been treated by Kamont [15].
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Remark 19. Let us mention that in the periodic context Delvos and Schempp [8]
gave estimates of the best approximation in the L2-norm by using Korobov spaces
(defined by the behavior of the Fourier coefficients).
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